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INTRODUCTION

Keloid is a hyperproliferative skin response to dermal injuries such as trauma, surgery, burns, and 
inflammation.[1] Keloid persistently grows beyond the boundaries of the original wound and invades 
adjacent tissue structures, taking on the characteristics of a tumor as it can proliferate almost 
indefinitely.[2] The pathology of keloids is the excessive deposition of extracellular matrix [ECM] 
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caused by abnormal proliferation of fibroblasts and secretion 
of matrix proteins.[3] Patients with keloids often experience 
pain and itching, which may seriously affect their psychological 
and physical quality of life.[4,5] Although some current clinical 
treatments, such as radiotherapy, surgery, interferon, and 
hormones, have improved the symptoms of keloid, the treatment 
efficacy of keloids is still limited due to a lack of comprehensive 
understanding on the pathogenic mechanisms of keloid.[6,7]

As a member of the protein disulfide isomerase (PDI) 
family, thioredoxin domain-containing protein 5 (TXNDC5) 
promotes the formation and rearrangement of disulfide 
bonds, which, in turn, supports proper protein folding.[8] 
A research have shown that TXNDC5 is aberrantly expressed 
in a variety of diseases, for example, upregulated TXNDC5 
in cancer protects cancer cells from oxidative stress and 
promotes cancer cell growth, proliferation, migration, and 
angiogenesis.[9] In rheumatoid arthritis, again, TXNDC5 
protects synovial fibroblasts from the deleterious effects 
of endoplasmic reticulum (ER) stress.[10] Furthermore, 
studies regarding lung fibrosis demonstrated that TXNDC5 
can promote fiber formation through directly binding to 
transforming growth factor beta (TGF-β)1 in lung fibroblasts 
and stabilizing TGF-β1 signaling.[11] Similarly, a research 
have revealed the role of TXNDC5 in renal fibrosis through 
the TGF-β signaling pathway and identified the therapeutic 
potential of TXNDC5 targeting renal fibrosis .[12] Knockdown 
of TXNDC5 attenuates CCL4-induced hepatic fibrosis 
in mice through enhancement of ER stress.[13] TXNDC5 
promotes tissue fibrosis by activating canonical (SMAD3-
dependent) or non-canonical (MAP kinases [MAPK], such 
as c-Jun N-terminal kinase ( JNK), extracellular signal-
regulated kinase (ERK) and survival protein STAT3) TGF-β 
signaling pathway.[14] It is known that the pathological nature 
of keloid is fibrosis of the dermal tissue.[15] However, the 
mechanism of action of TXNDC5 in keloid is still unknown.

A number of cell types have been identified as contributing 
to fibrosis, such as vascular endothelial cells, immune cells, 
and fibroblasts.[16] Fibroblasts are the central cell type in 
the process of skin fibrosis leading to extracellular matrix 
(ECM) accumulation and inflammation.[15,17] Fibroblasts 
in fibrotic diseases display excessive proliferative potential, 
increased migratory and invasive capacity, and increased 
ECM deposition that contribute to the pathogenesis of 
fibrosis.[15] These actions are primarily driven by fibrogenic 
growth factors such as TGF-β.[18,19] However, recent evidence 
suggests that fibroblasts are in fact a heterogeneous cell 
population in terms of morphology and function.[20,21] The 
development of single-cell RNA sequencing (scRNA-seq) 
provides an opportunity to study the heterogeneity of skin 
fibroblasts in homeostatic and pathological conditions. 
scRNA-seq suggested that fibroblasts in the normal human 
dermis are divided into several subgroups.[22,23]

Hence, in the present study, we hypothesized that TXNDC5 
may promote keloid development and potentially promote 
keloid fibroblast (KF) activation and proliferation through 
TGF-β signaling pathway. The single-cell data of keloid 
from public databases were obtained to screen fibroblast 
subpopulations that could promote the cell proliferation, 
migration, and TGF-β signaling pathway. In addition, AUCell 
enrichment score was calculated to assess the molecular 
mechanisms involved in keloid development promoted 
by TXNDC5 through the TGF-β signaling pathway. The 
current discoveries contributed to the understanding of the 
pathogenesis and therapeutic targets of keloid, providing a 
new theoretical basis for the clinical treatment of patients 
with keloid.

MATERIAL AND METHODS

Acquisition of single-cell data

The scRNA-seq data of 3 keloid samples and 3 normal scar 
control samples were obtained from the gene expression 
omnibus (GEO) database (GSE163973, https://www.
ncbi.nlm.nih.gov/geo/). Keloid sequencing libraries were 
constructed using ×10 Genomics and sequenced on Illumina 
NovaSeq 6000 system.

scRNA-seq data preprocessing and screening marker 
genes

The “Read10X” function in the Seurat package of R software 
was first carried out to read the scRNA-seq data of each keloid 
samples,[24] and then, single-cell data were normalized using 
“SCTransform” function. Subsequently, batch effects between 
keloid samples were removed by the harmony package. 
The uniform manifold approximation and projection 
(UMAP) was performed for downscaling based on the top 
20 principal components and used the “FindNeighbors” 
and “FindClusters” functions to categorize the keloid cells. 
For clustering of all keloid cells, the resolution at 0.1 was set. 
Finally, the corresponding clusters of marker genes were 
annotated to specific cell types based on marker data in the 
CellMarker 2.0 database (http://bio-bigdata.hrbmu.edu.cn/
CellMarker/).

Functional annotation of gene sets

The biological functions of a collection of genes of interest 
were explored by using the clusterProfiler package 
(version  4.8.2)[25] with the parameters of keyType = 
“ENTREZID,” pvalueCutoff = 0.05, and qvalueCutoff = 0.1.

AUCell enrichment analysis

The AUCell method could determine the activity status of 
gene collections in scRNA-seq data.[26] In this regard, gene 
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data of the TGF-β signaling pathway were downloaded from 
the Kyoto Encyclopedia of Genes and Genomes (https://www.
genome.jp/kegg/), and obtained gene data related to fibroblast 
proliferation, migration, apoptosis, and the TGF-β signaling 
pathway from the MsigDB database (https://www.gsea-msigdb.
org/gsea/msigdb). Subsequently, expression matrices for 
fibroblasts were extracted and AUCell scores were calculated 
for these sets of genes within each sample using the AUCell 
package.

Cell culture and transfection

The KEL FIB (KF, cat. CRL-1762) cells and normal fibroblasts 
(NFs, cat. PCS-201-010) were purchased from American 
Type  Culture Collection (ATCC) (Manassas, USA) and 
cultured in Dulbecco’s modified Eagle medium (DMEM, 
M4655, Merck, Darmstadt, Germany) containing 10% 
fetal bovine serum (S9020, Solarbio, China) in the cell 
incubator containing 5% CO2 at 37°C. Cells have been 
STR identified and the mycoplasma detection results 
are negative. The cells were treated with diluted small 
interfering (si) RNA targeting TXNDC5 (si-TXNDC5#1: 
5’-ATCGAGCTACTTCCCATAATA-3’; si-TXNDC5#2: 
5’-AGGGCCCTAACTAGAGTTCTA-3’.) and negative 
control (si-NC: 5′-UUCUUCGAACGU GUCACGUTT-3′) 
purchased from GenePharma (Suzhou, China). The treatment 
was performed using Lipofectamine® 3000 (L3000150, 
Thermo Fisher Scientific, Carlsbad, CA, USA), following the 
manufacturer’s guidelines. Transfection was conducted using 
serum-free DMEM for 8 h, the serum-depleted DMEM was 
substituted with DMEM supplemented with 10% fetal bovine 
serum to continue the cell incubation for another 48 h.

Reverse transcription-quantitative polymerase chain 
reaction (RT‑qPCR)

After the cell transfection, the cells were collected and 
total RNA (1 µg) was extracted with the GoScript Reverse 
Transcription System kit (A5003, Promega Corporation, 
Madison, Wisconsin, USA). After quantification and 
synthesis of cDNA, quantitative polymerase chain reaction 
was performed using SYBR Green Master Mix (1708880, 
Bio-Rad, USA). The primers used were as follows: 
TXNDC5 5’- CAGAGCCGGAA

GTGGAACC-3’ (forward), 5’- CCACGGAGCGA

AGAACTTGAT-3’ (reverse); TGF-β1 5’- GGCCAGATC

CTGTCCAAGC-3’ (forward), 5’- GTGGGTTTCCA

CCATTAGCAC-3’ (reverse); Smad2, 5’-CCG AAATGCC

ACGGTAGAAA-3’ (forward) and 
5’-GGGCTCTGCACAAAGATTGC-3’ (reverse); Smad3, 
5’-CCCCAGCACATAAT

AACTTGG-3’ (forward) and 5’-AGGAGATGGAGCA

CCAGAAG-3’ (reverse). β-actin was a housekeeping gene, 
5’-CCTTCCTGGGCA

TGGAGTCCT-3’(forward), and 5’-AATCTCATCTTG

TTTTCTGCG-3’ (reverse). Furthermore, the relative 
quantification of genes was calculated using the 2−ΔΔCt method[27].

Western blot

Proteins were obtained from normal fibroblasts (NFs) and 
KEL FIB (KFs) using radioimmunoprecipitation assay (RIPA) 
(R0010, Solarbio, Beijing, China). The protein concentration 
of cell lysates was determined using a bicinchoninic acid 
(BCA) protein assay kit (E112-01, Vazyme, Nanjing, China). 
30  µg of protein was separated by sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and then electrotransferred 
to polyvinylidene difluoride membranes (PVDF, IPVH00010, 
MILLIPORE, Billerica, Massachusetts, USA). The membranes 
were blocked with 5% skimmed milk, washed with Tris-buffered 
saline with Tween-20 (TBST, T1081, Solarbio, Beijing, China) 
buffer, and then washed with primary antibodies TGF-β1 
(ab315254, 1:1000, Abcam, Cambridge, United  Kingdom) 
and TXNDC5 (ab13820, 1:1000, Abcam, Cambridge, 
United  Kingdom), overnight at 4°C. The membranes treated 
with primary antibodies were, then, washed 3 times with TBST 
and incubated with anti-rabbit enzyme-linked antibody for 
1  h at room temperature, with Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) as an internal reference. Signals were 
measured by Immobilon Western Chemiluminescent HRP 
substrate (Millipore Corporation, Billerica, MA, USA) and an 
Amersham Imager 600 imager (GE healthcare Life science, 
Pittsburgh, USA) for visualization. Regarding Western Blot 
quantification, normalized was performed.

Transwell assay

The KF cells invasion was assessed using Transwell chambers 
with 8 µm pore size and pre-coated with Matrigel (Corning, 
Inc. USA). The transfected KF cells (1 × 104  cells/well) 
contained in serum-free DMEM were seeded into the upper 
chambers. Following 48-h incubation, the medium was 
removed, and invading cells were fixed in ice-cold 100% 
methanol, stained with 0.1% crystal violet (G1063, Solarbio, 
China) for 3  min, and washed with Phosphate-Buffered 
Saline (PBS P1000, Solarbio, Beijing, China). Then, the cells 
from three random fields were counted under a microscope 
(Eclipse Ts2, Nikon, Tokyo, Japan).

Wound-healing assay

The transfected KF cells were placed in a 6-well plate and 
the center of the cell monolayer was scratched with a pipette 
tip. Subsequently, the cells were washed 3  times with PBS 
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and cultured in serum-free DMEM. Images of the wounds 
were taken under a light microscope (magnification, ×100) 
at 0 h and 48 h, respectively. Finally, the width of the wounds 
was measured using Image J software (National Institutes of 
Health, Bethesda, Maryland, USA) to assess the migratory 
capacity of the KFs. The wound healing rate was calculated as 
[(0 hr width - 48 hr width)/0 hr width] × 100%.

Statistical analysis

R software (version  4.3.1, Columbia University Irving 
Medical Center, New York, NY, USA) and GraphPad Prism 
software (version 8.0.2, GraphPad, LLC., La Jolla, California) 
were utilized for all computational and analytical analyses 
in this research investigation. Student’s t-test was used to 
compare the differences in continuous variables between the 
two sample groups. The experimental results were obtained 
from three separate experiments. Statistical significance was 
determined under a threshold of P < 0.05.

RESULTS

Single-cell landscape analysis of keloids

Seurat package was used to normalize, downscale, and cluster 
the scRNA-seq data of keloid with cellular annotation to 
obtain five cell clusters, including fibroblast cells, epidermal 
stem cells, endothelial cells, macrophages, and mast cells 
[Figures  1a and Figure S1]. Specifically, KF cells high-
expressed THY1, TAGLN, MYH11, FGF7, ASPN, GPC3, 
SFRP1, WISP2, and MFAP5; endothelial cells high-expressed 
FLT1, KDR, VWF, PECAM1, and CDH5; epidermal stem 
cells high-expressed KRT5, KRT14, TP63, KRT1, SBSN, and 
KRTDAP; macrophages high-expressed CD163, CSF1R, 
CYBB, and FPR3; and mast cells high-expressed SLC18A2, 
CPA3, HPGDS, and TPSB2 [Figure  1b and c]. Finally, 
the proportion of different cell types in the keloid were 
determined. As shown in Figure  1d and 1e, the percentage 
of fibroblast cells was the highest in keloid patients (43.22%), 
which predicted a potential influence of fibroblasts cells in 
the development of keloid. However, since the pathological 
nature of keloid was the fibrosis of dermal tissue, the 
fibroblast clusters in keloid was explored.

Characterization of fibroblasts in keloid

To further understand the potential role of fibroblasts in 
Keloid, all the single-cell data of fibroblasts were extracted 
for clustering and identified two subpopulations of 
fibroblasts, including fibroblast cells 1 and fibroblast cells 2 
[Figure 2a]. In addition, the biological functions of fibroblast 
subpopulations in keloid were analyzed and it is found that 
fibroblast cells 1 were mainly enriched in pathways such as the 
Wnt signaling, angiogenesis, and epithelial cell proliferation 

and migration, while fibroblast cells 2 was mainly enriched 
in pathways such as MAPK signaling pathway, Rho protein 
signal transduction, and wound healing. Both the fibroblast 
subpopulations were enriched in the relevant TGF-β 
signaling pathway [Figure  2b]. Next, gene expressions in 
the two fibroblast subpopulations were explored and it is 
observed that LUM, COL3A1, COL1A2, COL1A1, FBLN1, 
and SFRP2 were high-expressed in fibroblast cells 1, while 
PDGFA, MT1A, TINAGL1, MCAM, ID4, and RGS5 
were present with higher expression in fibroblast cells 2 
[Figure  2c]. Gene set enrichment analysis results indicated 
that genes in the TGF-β signaling pathway were enriched 
in the fibroblast cells 1 [Figure 2d]. In addition, [Figure S2] 
showed that genes involved in cell proliferation, migration, 
and the TGF-β signaling pathway were more high-expressed 
in fibroblast cells 1. In particular, the AUCell enrichment 
score of TGF-β signaling pathway were higher in Keloid 
and fibroblast cells 1, suggesting that fibroblasts played an 
important role in keloid, which was likely to be regulated by 
TGF-β signaling pathway [Figure 2e and f].

Knockdown TXNDC5 downregulated TGF-β1 expression 
and inhibited migration and invasion of KFs cells

Based on the previous studies, TXNDC5 was involved in 
the formation of fibrosis in multiple organs. Therefore, the 
correlation between expression of TXNDC5 and fibroblasts 
and TGF-β signaling pathway was first explored, and 
observed that the TXNDC5 gene was significantly positively 
correlated with AUCell score of cell proliferation, migration, 
and TGF-β signaling pathway in keloid [Figure 3]. From bulk-
RNA-Seq analysis, GES158395, GSE188952, and GSE190626 
dataset were combined into a whole dataset containing 11 
keloid and 15 normal scars. Results showed that TXNDC5 
had higher expression in keloid in comparison to normal 
scars [Figure S3a]. Moreover, a positive phenomenon was 
observed between TXNDC5 expression and proliferation, 
migration, apoptosis, and TGF-β signaling pathway 
[Figure S3b-e]. [Figure S4a and b] also presented different 
pathways enriched in high TXNDC5 expression group and 
low TXNDC5 expression group. Those data indicated that 
TXNDC5 maybe involve in the progression of keloid.

Subsequently, the expression levels of TGF-β1 and TXNDC5 
in KFs were validated based on RT-qPCR. The results showed 
that the expression levels of TGF-β1 and TXNDC5 were 
significantly higher in KFs compared to normal fibroblasts 
(NFs) [P<0.001, Figure 4a]. Western blot results also showed 
that protein expressions levels of TGF-β1 and TXNDC5 were 
upregulated in KFs cells [P<0.001, Figure 4b]. Results of RT-
qPCR showed that the messenger RNA (mRNA) expressions 
of Smad2 and Smad3 were upregulated in KFs compared to 
NFs [P<0.05, Figure  4c], which were corresponding with 
the increased activation of TGF-β signaling pathway in KFs. 



Liu, et al.: TXNDC5 in keloid fibroblast

CytoJournal • 2024 • 21(40) | 5

Figure  1: Single-cell landscape of keloid and normal scar samples revealed by single-cell RNA 
sequencing (scRNA-seq) data. (a) Uniform manifold approximation and projection plot showing 
scRNA-seq data annotated for five different cell types, including fibroblast cells, epidermal stem cells, 
endothelial cells, macrophages, and mast cells. (b) Bubble plots of expression levels of marker genes 
in different cell types. (c) Violin diagram showing expression of major marker genes in different 
cell types. (d) Bar plot showing the proportion of cells of different cell types in different samples. 
(e) Demonstration of cell numbers of different cell types in keloid and normal scar groups. (UMAP: 
uniform manifold approximation and projection; TPSB2: tryptase beta 2; HPGDS: Hematopoietic 
prostaglandin D synthase; CPA3: carboxypeptidase A3; SLC18A2: solute carrier family 18 member 
A2; FPR3: formyl peptide receptor 3; CYBB: cytochrome b-245 beta chain; CSF1R: colony stimulating 
factor 1 receptor; KRTDAP: keratinocyte differentiation associated protein; SBSN: suprabasin; KRT1: 
keratin 1; TP63: tumor protein p63; KRT14: keratin 14; KRT5: keratin 5; VWF: von Willebrand factor; 
CDH5: cadherin 5; PECAM1: platelet and endothelial cell adhesion molecule 1; KDR: kinase insert 
domain receptor; FLT1: FMS-like tyrosine kinase 1; MFAP5: microfibril associated protein 5; WISP2: 
WNT1 inducible signaling pathway protein 2; SFRP1: secreted frizzled related protein 1; GPC3: 
glypican 3; ASPN: asporin; FGF7: fibroblast growth factor 7; MYH11: myosin heavy chain 11.)
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Figure 2: Single-cell landscape of fibroblasts in the keloid. (a) All keloid fibroblasts were clustered 
by uniform manifold approximation and projection and divided into two subpopulations, fibroblast 
cells 1 and fibroblast cells 2. (b) Enrichment analysis of biological processes of Differentially expressed 
genes (DEGs) between different fibroblast subpopulations. (c) Demonstration of highly expressed 
genes in two fibroblast subpopulations. (d) Gene set enrichment analysis results demonstrate 
that genes in the transforming growth factor-beta (TGF-β) signaling pathway are predominantly 
concentrated in fibroblast cells 1. (e) AUCell enrichment analysis of fibroblast cells 1 between keloid 
and normal scar in the TGF-β signaling pathway. (f) AUCell enrichment analysis of fibroblast cells 1 
and fibroblast cells 2 in the TGF-β signaling pathway. (UMAP: uniform manifold approximation and 
projection; PDGFA: platelet derived growth factor subunit A; MT1A: metallothionein 1A; TINAGL1: 
tubulointerstitial nephritis antigen-like 1; MCAM: melanoma cell adhesion molecule; ID4: inhibitor 
of DNA binding 4; RGS5: regulator of G-protein signaling 5; LUM: lumican; COL3A1: collagen type 
III alpha 1 chain; COL1A2: collagen type I alpha 2 chain; COL1A1: collagen type I alpha 1 chain; 
FBLN: fibulin 1; SFRP2: secreted frizzled related protein 2; TXNB: thioredoxin b; FN1: fibronectin 1; 
PTGS2: prostaglandin-endoperoxide synthase 2; ITGAV: integrin subunit alpha V; TSKU: tsukushi, 
small leucine rich proteoglycan; HIF1A: hypoxia inducible factor 1 subunit alpha.)
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Figure  3: Correlation analysis between thioredoxin domain-containing protein 5 gene expression levels and pathways. (a) Correlation 
analysis of thioredoxin domain-containing protein 5 gene expression levels with AUCell score of genes in the fibroblast proliferation. 
(b)  Correlation analysis of thioredoxin domain-containing protein 5 gene expression levels with AUCell score of genes in the fibroblast 
migration. (c) Correlation analysis of thioredoxin domain-containing protein 5 gene expression levels with AUCell score of genes in the 
execution phase of apoptosis. (d) Correlation analysis of thioredoxin domain-containing protein 5 gene expression levels with AUCell score 
of genes in the response to transforming growth factor-beta signaling pathways.

Next, siRNA TXNDC5 was used to downregulate TXNDC5 
expression in KFs [P<0.001, Figure  4d] and found that the 
knockdown TXNDC5 lowered the protein expression and 
mRNA level of TGF-β1 [P<0.05, Figure 4e and f]. The effect 
of TXNDC5 on KF migration and invasion was evaluated 
using the Transwell invasion and wound healing assay. The 
results demonstrated that silencing TXNDC5 expression 
reduced the invasive ability of KFs [P<0.0001, Figure  4g]. 
Similarly, the results of the wound healing assay showed that 
inhibition of TXNDC5 expression suppressed the migratory 
ability of KF cells [P<0.0001, Figure 4h].

DISCUSSION

Deciphering the cellular components of keloid is hindered 
by its intricate microenvironment that consists of numerous 
fibroblasts, endothelial cells, immune cells, and ECM 
deposits.[28] Understanding the pathogenic mechanisms 

of keloid is challenging due to the complex cellular 
composition and intercellular communication of the dermal 
disorder.[29] Furthermore, the specific cellular constituents 
are also affected by transcriptomic and epigenetic 
modifications.[1,29] As a cutting-edge technique, scRNA-
seq overcomes the limitations of conventional sequencing 
methods by enabling the discrimination of distinct cell types 
within intricate populations.[30-32] Advanced scRNA-seq 
technology facilitates the profiling of the cellular components 
of keloids and allows for recording transcriptomic 
information from individual cells and clustering cells in a vast 
dataset.[33] Here, a single-cell atlas of keloid was constructed 
and explored the characteristics and key regulatory pathways 
of different fibroblast subpopulations were explored. The 
effect of TXNDC5, a gene associated with fibrogenesis, on 
keloid was also explored. These findings contributed to a 
better understanding on the pathogenesis of keloid and 
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Figure  4: Thioredoxin domain-containing protein 5 (TXNDC5) is involved in migration and invasion of keloid fibroblasts (KFs). 
(a) Differential mRNA expression levels of transforming growth factor-beta 1 (TGF-β1) and TXNDC5 in normal fibroblasts (NFs) and KFs. 
(b) Differential protein expression levels of TGF-β1 and TXNDC5 in NFs and KFs. (c) Differential mRNA expression levels of Smad2 and 
Smad3 in NFs and KFs. (d) Reverse transcription-quantitative polymerase chain reaction was used to determine transfection efficiency of 
si-TXNDC5 in KFs. (e and f) The protein and messenger RNA level of TGF-β1 in KFs treated with si-TXNDC5. (g) Evaluation of fibroblast 
invasiveness using the Transwell invasion assay. (h) Assessment of fibroblast migration at 48 h in a wound healing assay. Where *P < 0.05, 
**P < 0.01,***P < 0.001, and ****P < 0.0001.

provided potential targets for clinical treatment of patients 
with keloid.

Fibroblasts have been widely studied in various fibrotic 
diseases.[16] Here, five cell types for keloid based on the 
scRNA-seq data in GSE163973 was identified and, further, 

clustered fibroblasts into two fibroblast subpopulations 
(fibroblast cells 1 and fibroblast cells 2). Enrichment 
analysis demonstrated that fibroblast subpopulations were 
mainly involved in processes related to the Wnt signaling 
pathway, epithelial cell proliferation, the MARK signaling 
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pathway, etc. Among them, the Wnt signaling pathway target 
genes have been shown to regulate a number of benign 
pathological changes in the skin.[34,35] Researchers have 
found aberrant activation of the Wnt/β-catenin signaling 
pathway in keloid.[36] Furthermore, Liu et al. observed that 
by lower RNAPTPN12 expression could promote KF growth 
by targeting micro RNAs to activate the Wnt signaling 
pathway.[37] Solé-Boldo et al. performed a single-cell analysis 
based on normal skin samples and classified fibroblasts 
using unsupervised clustering, and they found that certain 
fibroblast clusters were enriched in pathways related to 
inflammation, cellular chemotaxis, ossification, and collagen 
synthesis.[23] Similarly, previous study classified fibroblasts 
in keloid into seven subpopulations and found two major 
KF subpopulations involved in ossification, skeletal 
system development, and ECM proteoglycan-associated 
pathways, suggesting the mesenchymal characteristics 
of these subpopulations.[38] Notably, some genes with 
similar functions were high-expressed in the two fibroblast 
subpopulations that identified. For example, COL1A1, 
COL1A2, and COL3A1 are three isoforms of collagen, 
which is one of the major components in the tissues such as 
skin and bone.[39] These genes have been shown to provide 
mechanical strength and stability to tissues and to promote 
cell migration and proliferation during the wound healing 
process to accelerate wound repair.[40-42] SFRP2 promotes the 
proliferation of cardiac fibroblasts through the activation 
of the Wnt/β-catenin pathway and is also involved in the 
regulation of ECM synthesis and degradation as well as 
biological processes such as cell growth, differentiation, and 
migration.[43] Kobayashi et al. found that SFRP2-knockout 
mice have reduced myocardial fibrosis after myocardial 
infarction as compared to normal mice.[44] These results 
suggested that the two fibroblast subpopulations may play an 
important role in keloid and could serve as novel targets for 
fibrosis treatment.

Intriguingly, both the fibroblast subpopulations were primarily 
involved in transforming TGF-β signaling pathway.[45] TGF-β 
is a multifunctional family of cytokines, and the importance 
of well-regulated TGF-β signaling in wound healing has been 
reported in the treatment of patients with keloid pathology 
and chronic injuries.[46] Wang et al. indicated that in keloid 
with proliferative properties, TGF-β is high-expressed 
in the tissue and cultured fibroblasts.[47] TXNDC5 was 
significantly positively correlated with fibroblast genes in 
the proliferation, migration, and TGF-β signaling pathways. 
Furthermore, cellular experiments confirmed that the 
expressions of TXNDC5, TGF-β1, Smad2, and Smad3 were 
significantly upregulated in KFs. This revealed that TXNDC5 
was involved in the proliferation and migration of fibroblasts 
in keloid through the TGF-β signaling pathway. TXNDC5, 
an essential part of the PDI family, serves as a chaperone in 
the ER.[13] Then, TXNDC5 interacts with numerous cellular 

proteins, facilitating their appropriate folding and ensuring 
an accurate creation of disulfide bonds at its thioredoxin 
domains.[48,49] A  study with renal fibrosis showed that 
TXNDC5 is significantly upregulated in fibrotic liver tissues 
of humans and mice, and that TGF-β1 induces TXNDC5 
production in human hepatic stellate cells, which is necessary 
for the cell activation, proliferation, and survival as well as 
the production of ECM.[50] Mechanistically, TGF-β1 induces 
TXNDC5 expression by increasing ER stress and ATF6-
mediated transcriptional regulation.[50] Lee et al. found 
that TXNDC5 expression is upregulated in fibroblasts in 
pulmonary fibrosis and lungs.[11] TXNDC5 binds directly 
to TGF-β receptor type  1 (TGFβR1) in lung fibroblasts 
and enhances TGF-β1 signaling, which, in turn, leads to 
hyperactivation of fibroblasts, proliferation, and ECM 
production.[11] Overall, TXNDC5 is associated with fibrosis 
in a variety of human organs. Therefore, it is reasonable to 
assume that TGF-β1 combined with TGFβR to activate ER 
stress and transcription factor ATF6 and, then, upregulated 
the expression of TXNDC5, which, further, enhanced the 
pro-fibrotic TGF-β signal through increasing the folding and 
stability of TGFβR1 protein to promote fibrosis, ultimately 
leading to keloid.

However, there were some limitations to our study. First, the 
sample size of keloid in the GEO dataset was relatively small. 
Second, there was heterogeneity among keloid patients; 
therefore, the generalizability of the current results should 
also be validated with larger sample size. Third, the role of 
TXNDC5 in keloid formation needed to be verified using 
in vivo animal model and clinical samples. To improve the 
reliability of our findings, clinical data (database or hospital) 
were now collected to further validate the conclusions.

SUMMARY

Results confirmed that fibroblasts in keloid were 
heterogeneous based on the scRNA-seq dataset. High-
expressed genes in different fibroblast subpopulations 
were identified to be able to specifically characterize the 
function of fibroblast subpopulations. Genes involved in 
cell proliferation, migration, and TGF-β signaling pathway 
were more strongly expressed in the fibroblast cells 1 
subpopulation. In particular, TXNDC5 was significantly 
positively correlated with fibroblasts in keloid in terms of 
proliferation, migration and TGF-β signaling pathway. 
Those results provided a new direction for the treatment and 
diagnosis of keloid patients.
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ABBREVIATIONS

TXNDC5: Thioredoxin domain-containing protein 5
GSEA: Gene Set Enrichment Analysis
KFs: keloid fibroblasts
TGF-β: transforming growth factor beta
ECM: extracellular matrix
PDI: protein disulfide isomerase
ER: endoplasmic reticulum
JNK: N-terminal kinase
ERK: extracellular signal-regulated kinase
scRNA-seq: single-cell RNA sequencing
GEO: gene expression omnibus
UMAP: uniform manifold approximation and projection
DMEM: Dulbecco’s modified Eagle medium
Si: small interfering
RT-qPCR:  Reverse transcription-quantitative polymerase 

chain reaction
RIPA: radioimmunoprecipitation assay
BCA: bicinchoninic acid
TBST: Tris-buffered saline with Tween-20
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase
PBS: Phosphate-Buffered Saline
mRNA: messenger RNA
ATCC: American Type Culture Collection
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