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ABSTRACT
Objective: This study aimed to identify differential metabolites and key metabolic pathways between lung 
adenocarcinoma (LUAD) tissues and normal lung (NL) tissues using metabolomics techniques, to discover 
potential biomarkers for the early diagnosis of lung cancer.

Material and Methods: Forty-five patients with primary ground-glass nodules (GGN) identified on computed 
tomography imaging and who were willing to undergo surgery at Shanghai General Hospital from December 2021 to 
December 2022 were recruited to the study. All participants underwent video thoracoscopy surgery with segmental or 
wedge resection of the lung. Tissue samples for pathological examination were collected from the site of ground-glass 
nodules (GGN) lesion and 3 cm away from the lesion (NL). The pathology results were 35 lung adenocarcinoma (LUAD) 
cases (13 invasive adenocarcinoma, 14 minimally invasive adenocarcinoma, and eight adenocarcinoma in situ), 10 benign 
samples, and 45 NL tissues. For the untargeted metabolomics technique, 25 LUAD samples were assigned as the case group 
and 30 NL tissues as the control group. For the targeted metabolomics technique, ten LUAD samples were assigned as the 
case group and 15 NL tissues as the control group. Samples were analyzed by untargeted and targeted metabolomics, with 
liquid chromatography-tandem mass spectrometry detection used as part of the experimental procedure.

Results: Untargeted metabolomics revealed 164 differential metabolites between the case and control groups, 
comprising 110 up regulations and 54 down regulations. The main metabolic differences found by the 
untargeted method were organic acids and their derivatives. Targeted metabolomics revealed 77 differential 
metabolites between the case and control groups, comprising 69 up regulations and eight down regulations. 
The main metabolic changes found by the targeted method were fatty acids, amino acids, and organic acids. The 
levels of organic acids such as lactic acid, fumaric acid, and malic acid were significantly increased in LUAD 
tissue compared to NL. Specifically, an increased level of L-lactic acid was found by both untargeted (variable 
importance in projection [VIP] = 1.332, fold-change [FC] = 1.678, q = 0.000) and targeted metabolomics 
(VIP = 1.240, FC = 1.451, q = 0.043). Targeted metabolomics also revealed increased levels of fumaric acid 
(VIP = 1.481, FC = 1.764, q = 0.106) and L-malic acid (VIP = 1.376, FC = 1.562, q = 0.012). Most of the 20 
differential fatty acids identified were downregulated, including dodecanoic acid (VIP = 1.416, FC = 0.378, 
q = 0.043) and tridecane acid (VIP = 0.880, FC = 0.780, q = 0.106). Furthermore, increased levels of differential 
amino acids were found in LUAD samples.

Conclusion: Lung cancer is a complex and heterogeneous disease with diverse genetic alterations. The study 
of metabolic profiles is a promising research field in this cancer type. Targeted and untargeted metabolomics 
revealed significant differences in metabolites between LUAD and NL tissues, including elevated levels of organic 
acids, decreased levels of fatty acids, and increased levels of amino acids. These metabolic features provide valuable 
insights into LUAD pathogenesis and can potentially serve as biomarkers for prognosis and therapy response.
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INTRODUCTION

Lung cancer is one of the most common and deadly 
malignancies in the world.[1] In 2020, approximately 
2.2 million new cases were detected worldwide, with lung 
cancer accounting for 18.0% of all cancer-related deaths.[2] 
Chemotherapy and surgery are mostly ineffective for lung 
cancer patients diagnosed with late stages of the disease, and 
the 5-year survival rate of such patients is around 16%.[3] 
According to a review by Flenaugh,[4] the annual contribution 
of China to new lung cancer cases globally is 36%. The 
disease burden from this disease has a great impact on the 
national economy, workforce, and healthcare system while 
causing financial hardship for patients.[4]

Ground-glass nodule (GGN) is a common radiological 
sign of early lung adenocarcinoma (LUAD)[1] and can be 
identified in 30% of pulmonary computed tomography (CT) 
images of lung cancer patients.[5] The pathogenesis of GGN 
remains unclear. Depending on the degree of tumor invasion, 
GGN can be classified as atypical adenomatous hyperplasia 
(AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinoma (MIA), or invasive adenocarcinoma 
(IAC).[1,6] The World Health Organization Classification 
of Tumors (5th  edition) has classified AAH and AIS as 
precursor glandular lesions, and MIA and IAC as LUADs.[7] 
The progression of malignancy from AAH to AIS, and then 
further to MIA and IAC is a dynamic process.[8] The treatment 
options and prognosis of different GGN classifications are 
quite different.[6] AAH is a small localized lesion (≤0.5  cm 
diameter) with Clara cells and/or atypical proliferating type II 
alveolar pneumocytes and is generally considered benign.[9,10] 
Thus, patients with AAH may not need to undergo aggressive 
surgery.[9] AIS was previously known as bronchioloalveolar 
carcinoma and is a small (≤3  cm diameter), localized 
adenocarcinoma with no invasion.[10,11] MIA is defined as 
mixed and invasive lesions, with a maximum diameter size 
of 5 cm.[10,11] Prior research has shown the 5-year survival rate 
of AIS and MIA patients after surgical resection can be up to 
100%.[6,10-12] IAC is an adenocarcinoma with ≥5 cm diameter 
and showing invasion to the pleura, blood vessels, and even 
lymphatics.[12] The 5-year survival rate of IAC patients after 
surgical resection has been reported as 74.6%, which is lower 
than that of AIS and MIA patients.[6] Thus, early detection, 
diagnosis , and treatment of GGN are associated with good 
prognosis and patient outcomes.[13]

Although GGNs have the morphological and histological 
features of LUAD, they are different from conventional 
LUAD and solid nodules[14] and may be related to a subtype 
of indolent tumors.[14] The optimal management of GGN 
is based on the probability of malignancy.[5] To evaluate 
this, clinicians use several validated pulmonary nodule risk 
prediction models, with reported values for area under the 
curve ranging from 0.75 to 0.94. These include the Mayo 

Clinic,[15] Herder et al.,[16] Veterans Affairs Cooperative 
Study,[17] Brock University,[18] and Cleveland Clinic[19] models. 
Different levels of probability are associated with different 
management options. No additional intervention measure 
is required for a malignancy probability of <1%. Chest CT 
monitoring should be performed according to the size of 
the nodules for a malignancy probability of 1–5%. Three 
months of chest CT monitoring and/or positron emission 
tomography (PET)/CT imaging and/or a non-surgical 
biopsy are required for a malignancy probability of 5–30%. 
PET/CT imaging and/or a non-surgical biopsy should be 
applied for a malignancy probability of 30–65%, while PET/
CT imaging and/or a non-surgical biopsy and/or surgical 
resection are needed for a malignancy probability of 65–
90%.[5] Furthermore, the early symptoms of lung tumors are 
sometimes unclear. Thus, early diagnosis techniques and 
markers have become a major focus of current lung cancer 
research.[20]

Several techniques and markers for early diagnosis have been 
used in the clinical setting, including genomics, proteomics, 
transcriptomics, and metabolomics.[20] Metabolomics is a 
specific field of molecular biology that examines the body’s 
biochemical reactions under the regulation of proteins and 
genes.[20,21] More specifically, it evaluates small molecule 
compounds (molecular weight ≤1500 Da) produced during 
metabolic processes.[20,22,23] Metabolomics has been used 
to identify biomarkers for many different cancer types, 
including breast,[24] lung,[25] bladder,[26] colorectal,[27] and 
gastric,[28] as well as some other tumor types.[29] Various 
sample types can be used for metabolomics analysis, such as 
serum, saliva, sputum, plasma, urine, and even breath.[30,31] In 
the present study, we used liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) technology and ultra-
performance liquid chromatography-mass spectrometry 
(UPLC-MS) based on untargeted and targeted metabolomics 
techniques to screen for differential metabolites and key 
metabolic pathways between malignant nodules and normal 
lung (NL) tissues.

MATERIAL AND METHODS

Study design

From December 2021 to December 2022, 45  patients with 
primary GGN and who were willing to undergo surgery 
at the First Affiliated Hospital of Soochow University 
were recruited for the study. The inclusion criteria were as 
follows: (1) diagnosis of GGN based on the Chinese expert 
consensus for the diagnosis and treatment of pulmonary 
nodules (2018 Edition)[32] and (2) the patient was examined 
in our hospital and complete clinical data was available. 
The exclusion criteria were as follows: (1) detection of 
pulmonary inflammation, hematological disease, disease that 
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can cause abnormal blood indicators, malignant tumors in 
other body parts, or immune system disease; (2) prior lung 
surgery or other recent surgery; (3) absence of diagnosis of 
any other lung disease; and (4) incomplete clinical data. All 
participants underwent video-assisted thoracoscopic surgery 
for segmental or wedge resection of the lung. For each 
participant, tissue samples were taken from the lesion site and 
3 cm away from the lesion site. Only one cancer sample was 
taken from each patient. According to Zhang et al.,[33] GGNs 
are considered inert tumors due to their biological behavior. 
They can be stable, inactive, and not exhibit aggressive 
behavior. NL tissue located 3  cm away from the lesion was 
also taken. Thus, a total of 90 tissue samples from 45 patients 
were collected for pathological examination, with the results 
showing 35 LUAD samples (13 IAC, 14 MIA, and 8 AIS), 
10 benign samples, and 45 NL tissues. For the untargeted 
metabolomics technique, 25 LUAD samples were assigned as 
the case group and 30 NL tissues as the control group. For the 
targeted metabolomics technique, ten LUAD samples were 

assigned as the case group and 15 NL tissues as the control 
group. The grouping details are shown in Figure 1.

Major instruments and reagents

The following instruments were used: UPLC from Waters 2D 
UPLC (Waters, USA); high-resolution mass spectrometer 
(Q Exactive) from Thermo Fisher Scientific, USA; low-
speed cryogenic universal centrifuge (Centrifuge 5430) 
from Eppendorf, Germany; vortex mixer (QL-901) from 
Kylin-bell Lab Instruments Co., Ltd., China; ultrapure water 
systems (Milli-Q Integral) from Millipore Corporation, USA; 
vacuum concentrator (Maxi Vacbeta) from Gene Company; 
and tissue lyser (Jxfstprp) from Shanghai Jingxin Industrial 
Development Co., Ltd, China. The following reagents 
were used: Acetonitrile (A996-4) and MS-grade methanol 
(A454-4) from Thermo Fisher Scientific, USA; formic acid 
(50144-50 mL) from DIMKA, USA; and ammonium formate 
(17843-250G) from Honeywell Fluka, USA.

Figure 1: Flow chart showing the study overview, study design, and grouping information. (GGN: Ground-glass 
nodules, VATS: Video-assisted thoracoscopic surgery, LUADS: Lung adenocarcinomas, NL: Normal lung).
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Sample extraction

Untargeted metabolomics

A 25 mg sample from both 25 LUAD tissue samples and 30 NL 
tissue samples were taken as the specimen samples. Samples 
were thawed at 4°C and 800 µL of precooled extraction 
reagent (methanol: acetonitrile: water [2:2:1, v/v/v]) was 
added directly to 25 mg of tissue. For quality control (QC) of 
the sample preparation, internal standards mix 1 and internal 
standards mix 2 were used. Samples were homogenized for 
5  min using TissueLyser (JXFSTPRP, China), followed by 
10 min of sonication and 1 h of incubation at −20°C. Following 
centrifugation (15  min at 25,000  rpm, 4°C), the supernatant 
from the samples was collected for vacuum freeze drying. After 
centrifuging for 15  min at 25,000  rpm with the metabolites 
resuspended in 200 µL of 10% methanol, the supernatants 
were transferred to autosampler vials for LC-MS analysis. To 
test the consistency of the entire LC-MS analysis, a QC sample 
was created by pooling the same volume of each sample.

Targeted metabolomics

A 50% water/methanol solution (140 µL) was added to an 
appropriate amount of sample for extraction. After crushing, 
centrifuging was performed to obtain the supernatant and a 
derivatization reaction was then performed on the samples 
and QC sample. The samples and QC sample were diluted 
with HM400 diluent, centrifuged for 10  min, and the 
supernatant taken for UPLC-MS analysis.

LC-MS/MS analysis

Chromatographic conditions

Waters, USA was used for sample extraction. A high-resolution 
mass spectrometer (Q Exactive; Thermo Fisher Scientific, 
Waltham, MA, USA) with a heated electrospray ionization source 
and operated by the Xcalibur 2.3 software program (Thermo 
Fisher Scientific, Waltham, MA, USA) was used. A  Waters 
ACQUITY UPLC BEH C18 column (1.7 μm, 2.1 mm × 100 mm, 
Waters, USA) maintained at 45°C was used for chromatographic 
separation. In the positive mode, the mobile phase included 
0.1% formic acid (A) and 100% acetonitrile (B). In the negative 
mode, the mobile phase included 10 mM each of ammonium 
formate (A) and acetonitrile (B). The gradient conditions were 
as follows: 0–1 min, 2% B; 1–9 min, 2–98% B; 9–12 min, 98% B; 
12–12.1 min, 98% B–2% B; and 12.1–15 min, 2% B. The flow rate 
was 0.35 mL/min and the volume of injection was 5 μL.

MS conditions

The mass spectrometric settings in positive/negative ionization 
modes were as follows: spray voltage (3.8/−3.2 kV); sheath gas 
flow rate (40 arbitrary units [arb]); aux gas flow rate (10 arb); 

aux gas heater temperature (350°C); and capillary temperature 
(320°C). The resolution was 70000 full width at half maximum 
(FWHM) and the full scan range was 70–1050  m/z. With a 
maximum ion injection time of 100 ms, the automatic gain 
control (AGC) objective for MS acquisitions was set to 3e6. 
The top three precursors with a maximum ion injection time 
of 50 ms and a resolution of 17,500 FWHM were chosen for 
future MS/MS fragmentation. The AGC was 1e5, and 20, 40, 
and 60 eV stepped normalized collision energies were chosen.

UPLC-MS analysis

Chromatographic conditions

A Waters UPLC I-Class  Plus (Waters, USA) was used for 
sample extraction. Waters, USA maintained at 40°C was 
used for chromatographic separation. The mobile phase 
included ultra-pure water (A) and 30% acetonitrile (B). The 
gradient conditions were: 0–1 min, 5% B; 1–5 min, 5–30% 
B; 5–9 min, 30–50% B; 9–11 min, 50–78% B; 11–13.5 min, 
78–95% B; 13.5–16 min, 95–100% B; and 16.1–18 min, 5% 
B. The flow rate was 0.4 mL/min.

MS conditions

Source parameters for the QTRAP 6500 Plus equipped with 
an electrospray ion (ESI) Turbo Ion-Spray interface were set 
as follows: source temperature (500°C); ion spray voltage (IS) 
(4500 V in positive mode) or (−4500 V in negative mode); 
and ion source gas I (GS1) (40 psi), gas II (GS 2) (40 psi), and 
curtain gas (20 psi). MS mode methods were set at schedule 
mode with MS mode transitions, collision energy, declustering 
potential energy, and retention time for target metabolites.

Metabolomics data processing

Compound discoverer 3.1 (Thermo Fisher Scientific, USA) 
software was used to process the LC-MS/MS data, primarily 
for peak extraction, peak alignment, and compound 
identification. A  self-developed metabolomics R package 
(meta X) was used for data pre-processing, statistical analysis, 
metabolite classification, and functional annotations. 
Principal component analysis (PCA) was performed to assess 
groupings, trends, and outliers among the observed variables 
in the data set. Log2 logarithmic transformation and Pareto 
scaling were used to calculate the principal component. The 
differential metabolite screening was completed by partial 
least squares method discriminant analysis (PLS-DA). The 
risk of model overfitting was evaluated by the orthogonal PLS-
DA (OPLS-DA) model, and 200 times re-collection modeling 
was utilized for good reproducibility. The metabolites with 
variable importance in projection (VIP) values >1, fold-
change (FC) ≥1.2 or ≤0.83, and P < 0.05 (two-tailed Student’s 
t-test) were defined as significantly different metabolites. 
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To confirm the key pathways connected to the metabolic 
phenotype, a metabolic pathway enrichment analysis was 
performed using the KEGG website (www.genome.jp/kegg/).

Statistical analysis

Excel software was used for clinical data entry and organization. 
Data were analyzed using SPSS 17.0 software. Numerical data 
were represented using the mean ± standard deviation, and 
count data were represented using frequency counts.

RESULTS

Clinical information

Participant characteristics including gender, age, nodule size, 
nodular side, and nodule nature are presented in Table  1. 
A  total of 45 GGN patients were included, comprising 35 
LUAD (13 IAC, 14 MIA, and eight AIS) and ten benign nodule 

cases. The mean age of LUAD patients was 54.74 ± 13.80 years, 
with six males and 29  females. The location of nodules in 
LUAD patients was 23 on the right and 12 on the left, with a 
mean size of 1.39 ± 0.61 mm. Twelve patients had pure GGNs 
and 23 had part-solid GGNs. Concerning smoking status, 13 
were current smokers, five were ex-smokers, and 17 were non-
smokers. Of the total cases, 18 were epidermal growth factor 
receptor (EGFR) mutation-positive [Figure 2a], and 17 were 
EGFR mutation-negative [Figure 2b]. Two cases were positive 
for anaplastic lymphoma kinase (ALK) and 33 were negative.

Untargeted metabolomics

Significantly altered metabolites and their relative changes 
across groups

All samples from the LUAD case group, NL tissue control 
group, and QC group were examined by PCA modeling 
to visualize their distribution [Figure  3a-d]. A  PCA model 

Table 1: Characteristics of the GGN patient cohort (n=45).

Clinical variables LUAD patients (n=35) Benign nodule 
patients (n=10)Total IAC (n=13) MIA (n=14) AIS (n=8)

Gender (n, %)

Male 6 (17.14) 4 (66.67) 1 (16.67) 1 (16.67) 6 (60.00)

Female 29 (82.86) 9 (31.03) 13 (44.83) 7 (24.14) 4 (40.00)

Age (years) 54.74±13.80 59.31±13.00 56.36±14.00 44.50±10.31 58.00±15.71

Nodule size (mm) 1.39±0.61 1.79±0.67 1.20±0.43 1.07±0.48 3.62±4.01

Nodule side (n, %)

Right 23 (65.71) 7 (30.43) 12 (52.17) 4 (17.39) 4 (40.00)

Left 12 (34.29) 6 (50.00) 2 (16.67) 4 (33.33) 6 (60.00)

Nodule nature (n, %)

Pure GGN 12 (34.29) 2 (16.67) 3 (25.00) 7 (58.33) 0

Part‑solid GGN 23 (65.71) 11 (47.83) 11 (47.83) 1 (4.35) 5 (50.00)

Solid GGN 0 0 0 0 5 (50.00)

Smoking status (n, %)

Current smoker 13 (37.14) 4 (30.77) 5 (38.45) 4 (30.77) 2 (20.00)

Ex‑smoker 5 (14.29) 2 (40.00) 2 (40.00) 1 (20.00) 2 (20.00)

Non‑smoker 17 (48.57) 7 (41.18) 7 (41.18) 3 (17.65) 6 (60.00)

EGFR mutation (n, %)

Positive 18 (51.43) 11 (61.11) 6 (33.33) 1 (5.56) 3 (30.00)

Negative 17 (48.57) 2 (11.76) 8 (47.06) 7 (41.18) 7 (70.00)

ALK (n, %)

Positive 2 (5.71) 1 (50.00) 1 (50.00) 0 0

Negative 33 (94.29) 12 (36.36) 13 (39.39) 8 (24.25) 10 (100.00)
LUAD: Lung adenocarcinoma, IAC: Invasive adenocarcinoma, MIA: Minimally invasive adenocarcinoma, AIS: Adenocarcinoma in situ, SD: Standard 
deviation, EGFR: Epidermal growth factor receptor, ALK: Anaplastic lymphoma kinase, GGN: Ground‑glass nodule. N: Numbers



Zhang, et al.: Metabolomics materials maybe new tumor marks

CytoJournal • 2024 • 21(12)  |  6

was established between the comparative analysis groups 
(LUAD and NL tissue samples) to observe the distribution 
and separation trend for the two groups. The data were log2 
converted before the PCA model was established, with data 
scaled using the Pareto scaling method. Some overlap was 
observed in scattered sample points, but a clear trend for 
separation was evident, indicating a significant difference 
between the groups in both positive and negative ion 
modes [Figure  3c and d]. PLS-DA was then performed to 
visualize the separation of samples. Unlike PCA, PLS-DA is 
a supervised statistical method, allowing differences between 
classification groups to be reflected to the greatest extent. The 
PLS-DA model between the comparative group (LUAD and 
NL tissue samples) was established after log2-log conversion 
of the data, with the Par method used for scaling. A  7-fold 

Figure 3: Principal component analysis (PCA) model of lung adenocarcinoma (LUAD) samples (case 
group), normal lung (NL) tissues (control group), and quality control (QC) group. (a) PCA model of 
LUAD samples (case group) with 95%CI (confidence intervals) (red circle), NL tissues (control group) 
with 95%CI (green circle), and QC group in positive ion mode, (b) PCA model of LUAD samples 
(case group) with 95%CI (red circle), NL tissues (control group) with 95%CI (green circle), and QC 
group in negative ion mode, (c) PCA model of LUAD samples (case group) with 95%CI (red circle) 
and NL tissues (control group) with 95%CI (blue circle) in positive ion mode, and (d) PCA model of 
LUAD samples (case group) with 95%CI (red circle) and NL tissues (control group) with 95%CI (blue 
circle) in negative ion mode. (PC1: Principal Component 1, PC2: Principal Component 2).

a

c

b

d

Figure 2: Lung tissue cells stained with hematoxylin and eosin with 
magnification 40x. (a) Epidermal growth factor receptor (EGFR) 
mutation-positive with magnification 40x and (b) EGFR mutation-
negative with magnification 40x.

ba
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cross-validation was performed during modeling. To evaluate 
the model, the PLS-DA model were subjected to 200 response 
permutation tests (RPTs). Some overlap in scattered sample 
points was observed, but a clear trend of separation was again 
evident, indicating a significant difference between the groups 
in both positive and negative ion modes [Figure 4a and b]. In 
positive ion mode, R2Y was 0.87 and Q2 was 0.38. In negative 
ion mode, R2Y was 0.82 and Q2 was 0.36. The results showed 
a good match with acceptable predictive power, with no 
overfitting identified [Figure 4c and d, Table 2].

Screening for differential metabolites between LUAD and 
NL tissue groups

Data were subjected to Fold Change (FC) analysis to obtain the 
FC value. P-value was obtained by Student’s t-test, with correction 
for a false discovery rate to obtain the q-value. A  total of 850 
differential metabolites were identified between the two groups 
(589 in positive ion mode and 261 in negative mode). Among the 
589 differential metabolites identified in positive ion mode were 
40 organic acids and their derivatives, 15 organo heterocyclic 

Figure 4: Partial least squares method discriminant analysis (PLS-DA) model of lung adenocarcinoma 
(LUAD) samples (case group) and normal lung (NL) tissues (control group). (a) Principal component 
analysis model of LUAD samples (case group) with 95%CI (confidence intervals) (red circle) and NL 
tissues (control group) with 95%CI (blue circle) in positive ion mode, (b) PLS-DA model of LUAD 
samples (case group) with 95%CI (red circle) and NL tissues (control group) with 95%CI (blue circle) 
in negative ion mode, (c) A 200 times permutation test of PLS-DA models for (a), and (d) A 200 times 
permutation test of PLS-DA models for (b). In general, if Q2 obtained from the displacement test 
is less than Q2 of the model, and a red dotted line is upward sloping and the intercept between Q2 
and the longitudinal axis is less than 0, this indicates that the model is good and has no overfitting. 
The blue dotted line indicates the dividing line between the different categories of data points. (PC1: 
Principal Component 1, PC2: Principal Component 2, R2: the intercepts of the Y axis of the regression 
line of R2 during permutation experiment, Q2: the intercepts of the Y axis of the regression line of Q2 
during permutation experiment. Cor: correlation coefficient).

a b

dc
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Table 2: Statistical results for the PLS‑DA model of LUAD 
samples (case group) and NL tissues (control group).

Mode R2Y (cum) Q2 (cum) R2 Q2

Positive 0.87 0.38 (0.0, 0.73) (0.0,−0.53)

Negative 0.82 0.36 (0.0, 0.66) (0.0, −0.60)
PLS‑DA: Partial least squares method discriminant analysis, LUAD: Lung 
adenocarcinoma, NL: Normal lung, R2Y(cum): Interpretation rate for Y 
matrix, Q2(cum): predictive ability, R2: the intercepts of the Y axis of the 
regression line of R2 during permutation experiment, Q2: the intercepts 
of the Y axis of the regression line of Q2 during permutation experiment.

compounds, 15 benzenoids, 12 organic nitrogen compounds, 
nine alkaloids and their derivatives, seven nucleosides/nucleotides 
and their analog, four organic oxygen compounds, two lipids and 
lipid-like molecules, two phenylpropanoids and polyketides, 
one homogeneous non-metal compound, one nucleic acid, 
one peptide, one sphingolipid, one terpenoid, and one vitamin/
cofactor. The remaining 477 differential metabolites had no name. 
[Supplementary Table 1] lists the differential metabolites found 
in positive ion mode. Among the 261 differential metabolites 
identified in negative ion mode were 17 organic acids and their 
derivatives, eight benzenoids, six organic oxygen compounds, 
five lipids and lipid-like molecules, five nucleosides/nucleotides 
and their analogs, four phenylpropanoids and polyketides, three 
organo heterocyclic compounds, one alkaloid or derivative, one 
fatty acyl, one homogeneous non-metal compound, and one 
polyketide. The remaining 209 differential metabolites had no 
name. [Supplementary Table 2] lists the differential metabolites 
found in negative ion mode.

Metabolic pathways

A metabolic pathway enrichment analysis of differential 
metabolites was performed based on the KEGG database. In 

the positive ion mode, 130 metabolic pathways with P < 0.05 
were significantly enriched by the differential metabolites, 
while in the negative ion mode, 56 metabolic pathways 
were identified. The positive ion mode revealed a total of 
66 differential metabolic pathways and 130 differential 
metabolites. The top three pathways with enriched scores 
in the positive ion mode included metabolic pathways 
(23 metabolites), purine metabolism (five metabolites), and 
biosynthesis of amino acids (five metabolites). The negative 
ion mode revealed a total of 21 differential metabolic 
pathways and 56 differential metabolites. The top three 
pathways with enriched scores in the negative ion mode 
included metabolic pathways (13 metabolites), 2-oxalic 
acid metabolism (four metabolites), and glucagon signaling 
pathway (three metabolites) [Figure 5a and b].

Targeted metabolomics

Significantly altered metabolites and their relative changes 
across groups

A PCA model was established to examine the distribution 
and separation between LUAD and NL tissue groups. The 
results of PCA analysis showed overlap in scattered sample 
points [Figure  6a]. Next, a supervised PLS-DA model was 
performed, with the results also showing some overlap in 
scattered sample points but still a clear trend of separation 
[Figure  6b]. OPLS-DA was performed on the two groups 
of biological samples to establish the relationship model 
between metabolite level and sample categories, thus enabling 
the prediction of sample categories. The results of the OPLS-
DA analysis [Figure 6c] showed no overlap in the scattered 
sample points and a clear trend for separation. To judge 
the quality of the model without fitting risk, 200 RPTs were 
performed with the OPLS-DA model. The results showed 
an R2Y of 0.865 and Q2 of 0.604 [Figure  6d and Table  3]. 

Figure 5: Bubble plots showing the results of metabolic pathway enrichment analysis using the untargeted 
metabolomics technique. (a) positive ion mode, and (b) negative ion mode. AMPK: AMP-activated protein 
kinase (AMPK), HIF: Hypoxia-inducible factor, GABAergic: Gamma-aminobutyric acid (GABA)-ergic.

a b
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Table 3: Results from the OPLS‑DA model of LUAD samples 
(case group) and NL tissues (control group).

Statistical 
Results

R2Y (cum) Q2 (cum) R2 Q2

0.865 0.604 (0.0,0.73) (0.0,−0.38)
OPLS‑DA: Orthogonal PLS‑DA, LUAD: Lung adenocarcinoma,  
NL: Normal lung, R2Y(cum): Interpretation rate for Y matrix, Q2(cum): 
predictive ability, R2: the intercepts of the Y axis of the regression line of 
R2 during permutation experiment, Q2: the intercepts of the Y axis of the 
regression line of Q2 during permutation experiment.

Independent validation using a smaller subset strengthened 
the validity and applicability of the model’s findings. This 
provides a way of testing the generalizability and robustness 
of the model using unseen data, while remaining within the 
context of the original dataset.

Screening for differential metabolites between LUAD and 
NL tissue groups

FC and Student’s t-test analyses performed on the data 
identified 77 differential metabolites. These included 20 fatty 

Figure  6: Significantly altered metabolites and their relative change across groups. (a) Principal 
component analysis model between lung adenocarcinoma (LUAD) samples (case group) with 95%CI 
(confidence intervals) (yellow circle) and normal lung (NL) tissues (control group) with 95%CI 
(blue circle), (b) partial least squares method discriminant analysis (PLS-DA) model between LUAD 
samples (case group) with 95%CI (yellow circle) and NL tissues (control group) with 95%CI (blue 
circle), (c) orthogonal PLS-DA (OPLS-DA) model between LUAD samples (case group) with 95%CI 
(yellow circle) and NL tissues (control group) with 95%CI (blue circle), and (d) results of the 200 times 
permutation test of the OPLS-DA model for (c). In general, if Q2 obtained from the displacement test 
is less than Q2 of the model, and a red dotted line is upward sloping and the intercept between Q2 and 
the longitudinal axis is less than 0, this indicates that the model is good and has no overfitting. The 
blue dotted line indicates the dividing line between the different categories of data points.
(PCA1:Principal Component Analysis 1, PCA2: Principal Component Analysis 2, PC1: Principal 
Component 1, PC2: Principal Component 2, R2: the intercepts of the Y axis of the regression line of 
R2 during permutation experiment, Q2: the intercepts of the Y axis of the regression line of Q2 during 
permutation experiment. Cor: correlation coefficient).

a b

c d
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acids, 19 amino acids, 13 organic acids, eight benzenoids, 
six carbohydrates, four bile acids, two carnitines, two 
phenylpropanoic acids, one indole, one peptide, and one 
pyridine [Supplementary Table 3].

Metabolic pathways

Metabolic pathway enrichment analysis of differential 
metabolites was performed based on the KEGG database. 
A total of 71 metabolic pathways with P < 0.05 were found 
to be significantly enriched by the differential metabolites. 
The top three pathways for enrichment included biosynthesis 
of amino acids (11 metabolites), carbon metabolism (nine 
metabolites), and central carbon metabolism of cancer (nine 
metabolites) [Figure 7].

DISCUSSION

Lung cancer is a highly complex and heterogeneous disease 
that exhibits diverse genetic alterations in its different 
histological classes.[34] The genome of cancerous cells and 
tissues varies slightly among cancer patients. Although there 
exist numerous diagnostic markers for genes and proteins, 
these do not provide an accurate and feasible option for 
diagnosis due to the heterogeneity of cancer cells within 
individual patients.[35] Mutations in the tumor suppressor 
gene TP53 occur in 40–60% of non-small-cell lung cancer 
(NSCLC) tumors, with a higher incidence of lung cancers 
from smokers compared to non-smokers.[34] In addition, 
2–9% of NSCLCs have genetic changes in the ALK gene.[36] 
Mutations in exon 19 or 21 of EGFR occur in 15–30% of 
NSCLC patients.[37] About 30% of LUAD patients also have 
KRAS mutations. However, in contrast to mutant EGFR or 
ALK proteins, mutant KRAS is still not a clinically useful 

target.[38] Consequently, some patients may benefit from 
these markers while others do not.[35]

Cytological examination of lung tumor samples obtained by 
different methods has always been an important modality 
for diagnostic and predictive testing of lung cancer patients. 
Cytology provides several benefits compared to histology 
specimens when it comes to the morphological interpretation 
of cases.[39] These advantages include fewer artifacts, 
immediate fixation, improved preservation, and clear nuclear 
and cytoplasmic details in alcohol-fixed preparations. 
Nonetheless, certain challenges arise when attempting to 
further subtype a subset of NSCLC cases into squamous cell 
carcinoma and adenocarcinomas.[39]

The use of metabolomics in cancer research first started 
about 10 years ago. Along with studies of cancer metabolism, 
metabolomics has recently emerged as a research hotspot.[20] 
Metabolomics research has progressed rapidly in recent years 
and is anticipated to become a new hotspot in the field of lung 
cancer research. Compared to cytology, metabolomics has the 
ability to provide a comprehensive view of the metabolic state 
of a biological system, such as cell culture, biological fluid, 
and tissue.[40] By analyzing the complete set of metabolites in 
a sample, metabolomics can reveal changes in biochemical 
pathways that may not be detected by cytology or other 
methods. In contrast, cytology is typically better at detecting 
visible changes in cell morphology or structure that may 
result from cell abnormalities.[41] Therefore, both methods 
have their own distinct advantages in cancer diagnosis.

The human organism tightly controls metabolic biochemical 
reactions. Compared to genes and proteins, such reactions 
show substantially less difference between individuals.[20] 
A previous study showed that the ability of tumor cells to 
metabolize proteins, lipids, and carbohydrates to maintain 
cell proliferation is significantly altered compared to normal 
cells.[42] On tumor development, metabolic reprogramming 
gives cancer cells the ability to endure and grow.[43] Thus, 
metabolomics shows great promise as a means of finding 
reliable cancer metabolic markers, especially for tumor types 
that are difficult to detect in the early stages, such as LUAD.[20]

Targeted and untargeted metabolomics are currently the two 
metabolomics approaches. Targeted metabolomics can be 
used to quantify a particular set of metabolites, such as lipids, 
amino acids, fatty acids, and/or carbohydrates. Moreover, 
it can be used to examine specific metabolic pathways and 
to confirm biomarkers that have already been identified. 
Targeted methods rely on metabolite-specific signals, require 
a priori knowledge of the chemicals of interest and known 
metabolites, and do not provide global coverage.[43] Conversely, 
untargeted metabolomics methods provide a global profile 
of the metabolome. This method is frequently used for 
hypothesis-generating research (e.g., biomarker discovery) 
when full metabolite identification is not the objective.[43,44] 

Figure  7: Bubble chart showing the results of metabolic pathway 
enrichment analysis using the targeted metabolomics technique. 
ABC transporters: Adenosine triphosphate binding cassette 
transporters (ATP-binding cassette transporters, ABC transporters).
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Therefore, targeted metabolomics is often more quantitative, 
whereas untargeted metabolomics offers more information. 
In the present study, the metabolomics profile of LUAD 
patients was evaluated using both targeted and untargeted 
metabolomics approaches. The results from both approaches 
revealed clear differences in metabolites between LUAD tissue 
and NL tissue. Using an untargeted metabolomics approach, a 
total of 164 differential metabolites were identified, including 
110 that were upregulated and 54 that were downregulated. 
Organic acids and derivatives were the main metabolic 
differences found by the untargeted approach. Furthermore, 
77 differential metabolites were identified by the targeted 
metabolomics approach, including 69 that were upregulated 
and 8 that were downregulated. Fatty acids, amino acids, and 
organic acids were the major metabolic changes found with 
the targeted approach.

Organic acids are the final products of metabolic processes 
and can be utilized as novel biomarkers to assess prognosis, 
therapy response, and disease progression. Organic acids 
can also be used as biomarkers to reveal metabolic changes 
in the tumor and non-tumor tissues of cancer patients.[45] The 
previous studies reported changes in the concentrations of 
low-molecular-weight (LMW) organic acids in several cancer 
types including lung cancer,[46] bladder cancer,[47] and colon 
carcinoma.[48] Hori et al.[46] conducted a metabolomics study to 
investigate whether changes in the levels of LMW metabolites 
were useful for lung cancer diagnosis. These authors reported 
that organic acids such as lactic acid, fumaric acid, and malic 
acid were significantly elevated in the serum and tumor 
tissues of lung cancer patients. This result is consistent with 
the significant changes found inorganic acids in the present 
study, where increased levels of L-lactic acid were found in 
LUAD tissue using both untargeted (VIP = 1.332, FC = 1.678, 
q = 0.000) and targeted metabolomics (VIP = 1.240, FC = 
1.451, q = 0.043). In addition, targeted metabolomics revealed 
that fumaric acid (VIP = 1.481, FC = 1.764, q = 0.106) and 
L-malic acid (VIP = 1.376, FC = 1.562, q = 0.012) were also 
significantly upregulated in LUAD tissue. These organic 
acids and their derivatives are involved in the tricarboxylic 
acid (TCA) cycle. The “Warburg effect” means that aerobic 
glycolysis is the preferred energy source for the majority of 
cancer cells, as opposed to oxidative phosphorylation.[49] 
Glutamine also serves as a significant energy source for cancer 
cells, and glutamine metabolism enables these cells to 
maintain TCA cycle activity during tumor growth.[46] Thus, 
the different biological mechanisms for energy production in 
cancer cells may be the underlying reason for the metabolite 
changes observed in LUAD.

Fatty acids carry out multiple functions in the body. This 
crucial energy source is produced in the liver and skeletal 
muscle and accumulates as triacylglycerol.[50] The body 
obtains fatty acids through dietary intake and through de novo 

synthesis.[51] The main functions of fatty acids are to serve 
as an energy source for the TCA cycle, as building blocks 
for the synthesis of complex lipids such as sphingolipids, 
phospholipids, and as intra/extracellular signaling 
molecules.[50] A previous study investigated a large number 
of fatty acids as potential markers of lung cancer.[30] The levels 
of many fatty acids, such as dodecanoic acid and tridecanoic 
acid, were found to be reduced in cancers. This is consistent 
with results from the present study, which found that most of 
the 20 fatty acids examined were downregulated, for example, 
dodecanoic acid (VIP = 1.416, FC = 0.378, q = 0.043) and 
tridecanoic acid (VIP = 0.880, FC = 0.780, q = 0.106).

Complex metabolic features such as the Warburg effect and 
abnormal lipid and amino acid metabolism can be detected 
in cancer cells. High energy and high biomass are required for 
cancer cell proliferation.[23] Amino acids have an important 
effect on cancer cells, and the majority of carbon-based 
biomass is produced from amino acids. They are also the 
main source of nitrogen for hexosamines, nucleotides, and 
other nitrogenous molecules in cancer cells.[52] Furthermore, 
amino acids can control the protein phosphorylation cascade 
and gene expression. Some amino acids, including leucine, 
arginine, and glutamine, can signal mTOR1 to become 
phosphorylated in a cell-specific manner, thus controlling 
the conversion of intracellular proteins.[53] However, amino 
acid metabolism is tightly controlled and linked to various 
metabolic networks, including lipid and glucose metabolism. 
Qi et al.[30] carried out a metabolomics investigation to 
identify various metabolites with different polarities in small 
amounts of plasma from lung cancer patients. These authors 
found that the level of certain amino acids was increased in 
lung cancer patients. A similar study by Ni et al.[53] identified 
six metabolites that distinguished lung cancer patients from 
healthy controls, namely, valine, glycine, citrulline, arginine, 
methionine, and C16-carnitine. In the present study, a 
minority of amino acids were found to be increased in LUAD 
samples, which was consistent with the previous reports. 
Furthermore, the biosynthesis of amino acids was identified 
as a significantly important metabolic pathway.

Low-dose CT is employed for LUAD screening, as 
well as for general lung cancer screening. Biopsy or 
resection procedures are recommended based on various 
characteristics and the findings of prediction models such 
as the Herder et al. model[16] and the Brock University 
model.[18] Without obtaining tissue samples, this study 
lacks relevance in daily medical practice. Pathological 
examination of tissue samples provides definitive answers. 
Decisions regarding lung cancer treatment are currently 
guided by factors such as TNM staging, histology, and 
predictive molecular markers.

There is growing interest in the use of liquid biopsies that can 
potentially identify high-risk individuals suitable for screening 
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programs. This approach may increase the benefits of screening 
and also prevent unnecessary invasive procedures.

The number of LUAD patients investigated in the present 
study was relatively small. Confirmation of the clinical 
importance of untargeted and targeted metabolomics 
techniques for lung cancer detection will require additional 
studies on larger patient cohorts. Another limitation of our 
study is that the “normal” lung tissue samples were obtained 
from patients with disease. Therefore, these samples may 
not accurately represent the “normal” tissue in individuals 
without disease. Ethical considerations prevent the use of 
invasive procedures, such as open-chest surgeries, on non-
diseased individuals solely for the purpose of obtaining 
normal tissue samples for research. Consequently, it was not 
possible to obtain completely healthy lung tissue samples 
from non-diseased individuals. This limits the ability to 
compare and differentiate between diseased and non-
diseased lung tissue samples.

SUMMARY

Lung cancer is a highly complex and heterogeneous disease 
with diverse genetic alterations. The heterogeneity of cancer 
cells makes it difficult to accurately diagnose and predict 
outcomes using gene- or protein-based markers. Metabolomics 
analyzes the metabolic profile of cancer cells and has emerged 
as an exciting research area in the study of lung cancer.

The two main approaches in metabolomics are targeted 
and untargeted. Targeted metabolomics examines specific 
metabolites or metabolic pathways, while untargeted 
metabolomics provides a global view of the metabolome. 
In the present study, both targeted and untargeted 
metabolomics were used to analyze the metabolomic profile 
of LUAD patients. Significant differences in metabolites were 
observed between LUAD tissue and histologically normal 
tissue. The levels of organic acids and their derivatives, such 
as lactic acid, fumaric acid, and malic acid, were found to be 
significantly elevated in LUAD tissue compared to normal 
tissue. These organic acids are involved in the TCA cycle, 
which is essential for energy production in cancer cells. 
Fatty acids serve as energy sources and building blocks for 
complex lipids and are predominantly downregulated in 
LUAD tissues. Amino acids are crucial for cell proliferation 
and as a source of nitrogen. Increased levels of amino acids 
were found in LUAD samples.

The detection of complex metabolic features, including 
the Warburg effect and abnormal lipid and amino acid 
metabolism, provides valuable insight into the pathogenesis 
of LUAD. Metabolomics could also be used to identify 
potential biomarkers of prognosis, therapy response, and 
disease progression.
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ABC - Adenosine triphosphate binding cassette
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AGC - Automatic gain control 
AIS - Adenocarcinoma in situ 
ALK - Anaplastic lymphoma kinase 
AMPK - AMP-activated protein kinase
CT - Computed tomography 
EGFR - Epidermal growth factor receptor 
ESI - electrospray ion
FC - Fold change 
FWHM - full width at half maximum
GABAergic - Gamma-aminobutyric acid (GABA)-ergic
GGN - Ground-glass nodules 
IAC - Invasive adenocarcinoma 
LC-MS/MS - �Liquid chromatography tandem mass 

spectrometry 
LMW - Low-molecular-weight 
LUAD - Lung adenocarcinoma 
MIA - Minimally invasive adenocarcinoma 
NL - Normal lung 
NSCLC - Non-small-cell lung cancer 
OPLS-DA - �Orthogonal partial least squares method 

discriminant analysis 
PCA - Principal component analysis 
PET - Positron emission tomography 
PLS-DA - Partial least squares method discriminant analysis 
QC - Quality control 
RPTs - Response permutation tests 
RT - Retention time
TCA - Tricarboxylic acid 
UPLC-MS - �Ultra-performance liquid chromatography mass 

spectrometry 
VIP - Variable importance in projection.

AUTHOR CONTRIBUTIONS 

The manuscript was drafted by X Z and J Z. X Z and J Z leaded 
the team to complete the study’s conceptualization and design, 
and X T, Y C and J C were involved in this process. X Z was 
mainly responsible for collecting and evaluating data. Y L, S J 
and H Z participated in the evaluation of clinical data. X Z and 
J Z were mainly responsible for analyzing and interpretating 
the data. C D and Y Z participated in data and information 
visualization. X Z and J Z revised the manuscript critically for 
important intellectual content and approved final version to 
be published. X Z and J Z were accountable for all aspects of 



Zhang, et al.: Metabolomics materials maybe new tumor marks

CytoJournal • 2024 • 21(12)  |  13

the work in ensuring that questions related to the accuracy or 
integrity of any part of the work are appropriately investigated 
and resolved. All authors read and approved the final 
manuscript. All authors have participated sufficiently in the 
work and agreed to be accountable for all aspects of the work.

ETHICS APPROVAL AND CONSENT TO 
PARTICIPATE

The study was conducted by following per under the Helsinki 
Declaration and was approved by the Ethics Committee of 
first Affiliated Hospital of Soochow University (Ethics File 
Approval letter of Review Board 2023–176).

Written informed consent was obtained from all the 
participants prior to the publication of this study.

FUNDING

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

EDITORIAL/PEER REVIEW

To ensure the integrity and highest quality of CytoJournal 
publications, the review process of this manuscript was 
conducted under a double-blind model (authors are blinded for 
reviewers and vice versa) through an automatic online system.

REFERENCES

1.	 Tao G, Yin L, Shi D, Ye J, Lu Z, Zhou Z, et al. Dependence 
of radiomic features on pixel size affects the diagnostic 
performance of radiomic signature for the invasiveness of 
pulmonary ground-glass nodule. Br J Radiol 2021;94:20200089.

2.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, 
Jemal A, et al. Global cancer statistics 2020: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 cancers 
in 185 countries. CA Cancer J Clin 2021;71:209-49.

3.	 Otoshi T, Nagano T, Park J, Hosomi K, Yamashita T, 
Tachihara M, et al. The gut microbiome as a biomarker of 
cancer progression among female never-smokers with lung 
adenocarcinoma. Anticancer Res 2022;42:1589-98.

4.	 Flenaugh EL. Tobacco smoking in China: A pulmonary health 
crisis. Curr Opin Pulm Med 2019;25:188-91.

5.	 Mazzone PJ, Lam L. Evaluating the patient with a pulmonary 
nodule: A review. JAMA 2022;327:264-73.

6.	 Dong H, Yin L, Lou C, Yang J, Wang X, Qiu Y. Correlation of 
computed tomography quantitative parameters with tumor 
invasion and Ki-67 expression in early lung adenocarcinoma. 
Medicine (Baltimore) 2022;101:e29373.

7.	 International Agency for Research on Cancer. Thoracic 
tumours, WHO classification of tumours. 5th  ed., Vol.  5. 

Available from: https://publications.iarc.fr/Book-And-
Report-Series/Who-Classification-Of-Tumours/Thoracic-
Tumours-2021 [Last accessd on 2023 Nov 03].

8.	 Wang Z, Li Z, Zhou K, Wang C, Jiang L, Zhang L, et al. Deciphering 
cell lineage specification of human lung adenocarcinoma with 
single-cell RNA sequencing. Nat Commun 2021;12:6500.

9.	 Wang B, Hamal P, Meng X, Sun K, Yang Y, Sun Y, et al. 
Evaluation of the radiomics method for the prediction of atypical 
adenomatous hyperplasia in patients with subcentimeter 
pulmonary ground-glass nodules. Front Oncol 2021;11:698053.

10.	 Kuhn E, Morbini P, Cancellieri A, Damiani S, Cavazza A, 
Comin CE. Adenocarcinoma classification: Patterns and 
prognosis. Pathologica 2018;110:5-11.

11.	 Yotsukura M, Asamura H, Motoi N, Kashima J, Yoshida Y, 
Nakagawa K, et al. Long-term prognosis of patients with 
resected adenocarcinoma in situ and minimally invasive 
adenocarcinoma of the lung. J Thorac Oncol 2021;16:1312-20.

12.	 Succony L, Rassl DM, Barker AP, McCaughan FM, Rintoul  RC. 
Adenocarcinoma spectrum lesions of the lung: Detection, pathology 
and treatment strategies. Cancer Treat Rev 2021;99:102237.

13.	 Wu W, Peng J, Gao H, Lin Y, Lin Q, Weng Z. Factors associated 
with pulmonary function changes in patients undergoing 
microwave ablation for pulmonary ground-glass nodules. 
Technol Cancer Res Treat 2022;21:1-8.

14.	 Chen KN. The diagnosis and treatment of lung cancer 
presented as ground-glass nodule. Gen Thorac Cardiovasc 
Surg 2020;68:697-702.

15.	 Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. 
The probability of malignancy in solitary pulmonary nodules. 
Application to small radiologically indeterminate nodules. 
Arch Intern Med 1997;157:849-55.

16.	 Herder GJ, van Tinteren H, Golding RP, Kostense PJ, Comans EF, 
Smit EF, et al. Clinical prediction model to characterize pulmonary 
nodules: Validation and added value of 18F-fluorodeoxyglucose 
positron emission tomography. Chest 2005;128:2490-6.

17.	 Gould MK, Ananth L, Barnett PG, Veterans Affairs SNAP 
Cooperative Study Group. A  clinical model to estimate the 
pretest probability of lung cancer in patients with solitary 
pulmonary nodules. Chest 2007;131:383-8.

18.	 McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, 
Soghrati K, et al. Probability of cancer in pulmonary nodules 
detected on first screening CT. N Engl J Med 2013;369:910-9.

19.	 Reid M, Choi HK, Han X, Wang X, Mukhopadhyay S, Kou L, 
et al. Development of a risk prediction model to estimate 
the probability of malignancy in pulmonary nodules being 
considered for biopsy. Chest 2019;156:367-75.

20.	 Yu L, Li K, Zhang X. Next-generation metabolomics in lung 
cancer diagnosis, treatment and precision medicine: Mini 
review. Oncotarget 2017;8:115774-86.

21.	 Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification 
of bioactive metabolites using activity metabolomics. Nat Rev 
Mol Cell Biol 2019;20:353-67.

22.	 Christodoulou CC, Zachariou M, Tomazou M, Karatzas E, 
Demetriou CA, Zamba-Papanicolaou E, et al. Investigating the 
transition of pre-symptomatic to symptomatic Huntington’s 
disease status based on omics data. Int J Mol Sci 2020;21:7414.

23.	 Hynne H, Sandås EM, Elgstøen KB, Rootwelt H, Utheim TP, 
Galtung HK, et al. Saliva metabolomics in dry mouth patients 



Zhang, et al.: Metabolomics materials maybe new tumor marks

CytoJournal • 2024 • 21(12)  |  14

with head and neck cancer or Sjögren’s syndrome. Cells 
2022;11:323.

24.	 Wei Y, Jasbi P, Shi X, Turner C, Hrovat J, Liu L, et al. Early breast 
cancer detection using untargeted and targeted metabolomics. 
J Proteome Res 2021;20:3124-33.

25.	 Noreldeen HA, Liu X, Xu G. Metabolomics of lung cancer: Analytical 
platforms and their applications. J Sep Sci 2020;43:120-33.

26.	 Zhang WT, Zhang ZW, Guo YD, Wang LS, Mao SY, 
Zhang  JF, et al. Discovering biomarkers in bladder cancer by 
metabolomics. Biomark Med 2018;12:1347-59.

27.	 Brezmes J, Llambrich M, Cumeras R, Gumà J. Urine NMR 
metabolomics for precision oncology in colorectal cancer. Int 
J Mol Sci 2022;23:11171.

28.	 Kadam W, Wei B, Li F. Metabolomics of gastric cancer. Adv 
Exp Med Biol 2021;1280:291-301.

29.	 Gao H, Song Y, Ma J, Zhai J, Zhang Y, Qu X. Untargeted 
metabolomics analysis of omeprazole-enhanced chemosensitivity 
to cisplatin in mice with non-small cell lung cancer. Chem Biol 
Interact 2022;360:109933.

30.	 Qi SA, Wu Q, Chen Z, Zhang W, Zhou Y, Mao K, et al. High-
resolution metabolomic biomarkers for lung cancer diagnosis 
and prognosis. Sci Rep 2021;11:11805.

31.	 Joshi AD, Rahnavard A, Kachroo P, Mendez KM, Lawrence W, 
Julián-Serrano S, et al. An epidemiological introduction to 
human metabolomic investigations. Trends Endocrinol Metab 
2023;34:505-25.

32.	 Society of Respiratory Diseases Lung Cancer Group of Chinese 
Medical Association, Chinese Lung Cancer Association. 
Chinese expert consensus on diagnosis and treatment of 
pulmonary nodules (2018 edition) (in Chinese). Zhonghua Jie 
He He Hu Xi Za Zhi 2018;41:763-71.

33.	 Zhang T, Li X, Liu J. Prediction of the invasiveness of ground-
glass nodules in lung adenocarcinoma by radiomics analysis 
using high-resolution computed tomography imaging. Cancer 
Control 2022;29:1-8.

34.	 Hipólito A, Mendes C, Serpa J. The metabolic remodelling in 
lung cancer and its putative consequence in therapy response. 
Adv Exp Med Biol 2020;1219:311-33.

35.	 Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour 
heterogeneity in the clinic. Nature 2013;501:355-64.

36.	 Woo CG, Seo S, Kim SW, Jang SJ, Park KS, Song JY, 
et al. Differential protein stability and clinical responses of 
EML4-ALK fusion variants to various ALK inhibitors in 
advanced ALK-rearranged non-small cell lung cancer. Ann 
Oncol 2017;28:791-7.

37.	 Min HY, Lee HY. Oncogene-driven metabolic alterations in 
cancer. Biomol Ther (Seoul) 2018;26:45-56.

38.	 Kerr EM, Martins CP. Metabolic rewiring in mutant Kras lung 
cancer. FEBS J 2018;285:28-41.

39.	 Jain D, Roy-Chowdhuri S. Advances in cytology of lung cancer. 
Semin Diagn Pathol 2021;38:109-15.

40.	 Papadimitropoulos MP, Vasilopoulou CG, Maga-Nteve C, 
Klapa MI. Untargeted GC-MS metabolomics. Methods Mol 
Biol 2018;1738:133-47.

41.	 Weitz AC, Lee NS, Yoon CW, Bonyad A, Goo KS, Kim S, 
et al. Functional assay of cancer cell invasion potential based 
on mechanotransduction of focused ultrasound. Front Oncol 
2017;7:161.

42.	 Merino Salvador M, Gómez de Cedrón M, Moreno Rubio J, 

Falagán Martínez S, Falagán Martínez S, Casado E, et al. Lipid 
metabolism and lung cancer [published correction appears 
in Crit Rev Oncol Hematol 2019;133:45]. Crit Rev Oncol 
Hematol 2017;112:31-40.

43.	 Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer 
metabolism in the era of precision oncology. Nat Rev Drug 
Discov 2022;21:141-62.

44.	 Zhang X, Zhu X, Wang C, Zhang H, Cai Z. Non-targeted and 
targeted metabolomics approaches to diagnosing lung cancer 
and predicting patient prognosis. Oncotarget 2016;7:63437-48.

45.	 Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH, Yun J, et al. 
Quantitative measurement of organic acids in tissues from 
gastric cancer patients indicates increased glucose metabolism 
in gastric cancer. PLoS One 2014;9:e98581.

46.	 Hori S, Nishiumi S, Kobayashi K, Shinohara M, Hatakeyama Y, 
Kotani Y, et al. A metabolomic approach to lung cancer. Lung 
Cancer 2011;74:284-92.

47.	 Putluri N, Shojaie A, Vasu VT, Vareed SK, Nalluri S, Putluri V, 
et al. Metabolomic profiling reveals potential markers and 
bioprocesses altered in bladder cancer progression. Cancer Res 
2011;71:7376-86.

48.	 Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, 
Kind T, et al. Metabolite profiling of human colon carcinoma-
-deregulation of TCA cycle and amino acid turnover. Mol 
Cancer 2008;7:72.

49.	 Warburg O. On the origin of cancer cells. Science 1956;123:309-14.
50.	 Acharya R, Shetty SS, Kumari NS. Fatty acid transport proteins 

(FATPs) in cancer. Chem Phys Lipids 2023;250:105269.
51.	 Koundouros N, Poulogiannis G. Reprogramming of fatty acid 

metabolism in cancer. Br J Cancer 2020;122:4-22.
52.	 Liu K, Li J, Long T, Wang Y, Yin T, Long J, et al. Changes in 

serum amino acid levels in non-small cell lung cancer: A case-
control study in Chinese population. PeerJ 2022;10:e13272.

53.	 Ni J, Xu L, Li W, Zheng C, Wu L. Targeted metabolomics for 
serum amino acids and acylcarnitines in patients with lung 
cancer. Exp Ther Med 2019;18:188-98.

How to cite this article: Zhang X, Tong X, Chen Y, Chen J, Li Y, Ding C, 
et al. A  metabolomics study on carcinogenesis of ground-glass nodules. 
CytoJournal 2024;21:12. doi: 10.25259/Cytojournal_68_2023

HTML of this article is available FREE at: 
https://dx.doi.org/10.25259/Cytojournal_68_2023

https://dx.doi.org/10.25259/Cytojournal_68_2023


Zhang, et al.: Metabolomics materials maybe new tumor marks

CytoJournal • 2024 • 21(12)  |  15

(Contd...)

SUPPLEMENTARY TABLES

Class Metabolites Molecular 
weight

Actual 
RT 

VIP Fold 
change

q‑value Expression

Organic nitrogen compounds Dihomo‑γ‑linolenoyl 
ethanolamide

349.298 9.513 2.848 8.973 0.000 Up

Benzenoids 2‑hydroxyhippuric acid 195.054 3.624 2.792 28.58 0.000 Up

Benzenoids Sertraline 305.075 2.465 2.763 5.688 0.000 Up

Organic oxygen compounds Indican 295.106 3.582 2.725 16.18 0.000 Up

Organic acids and their derivatives Eugenol sulfate 244.041 0.599 2.564 0.239 0.000 Down

Alkaloids and their derivatives Pilocarpine 208.122 3.546 2.558 0.187 0.000 Down

Organic acids and their derivatives Tb8545000 250.015 4.78 2.401 3.997 0.000 Up

Organic acids and their derivatives N‑acetylvanilalanine 253.095 3.814 2.387 3.289 0.000 Up

Organic acids and their derivatives L‑tyrosine methyl ester 195.09 2.865 2.384 3.481 0.000 Up

Organic nitrogen compounds Linoleoyl ethanolamide 323.282 9.372 2.343 4.283 0.000 Up

Organic acids and their derivatives Allantoic acid 176.054 0.596 2.326 0.285 0.000 Down

Organic nitrogen compounds Synaptamide 371.282 9.358 2.292 3.956 0.000 Up

Organic acids and their derivatives Goralatide 487.228 2.607 2.192 2.834 0.000 Up

Organic acids and their derivatives Valylvaline 216.148 4.217 2.158 2.829 0.000 Up

Organic acids and their derivatives (2e)‑2,5‑dichloro 
‑4‑oxo‑2‑hexenedioic acid

225.944 0.611 2.153 0.296 0.000 Down

Benzenoids 5‑methoxysalicylic acid 168.043 5.215 2.132 0.182 0.002 Down

Organic nitrogen compounds Anandamide (aea) 347.282 9.372 2.125 4.697 0.002 Up

Organo heterocyclic compounds Nl8513000 191.095 5.176 2.11 2.817 0.001 Up

Organic acids and their derivatives N‑([2s]‑2‑hydroxypropanoyl) 
methionine

221.072 3.838 2.095 2.821 0.001 Up

Organic acids and their derivatives N‑acetyl‑1‑aspartylglutamic 
acid

304.091 1.511 2.085 3.48 0.000 Up

Alkaloids and their derivatives (+)‑castanospermine 189.1 4.217 2.083 2.804 0.001 Up

Organic acids and their derivatives N‑acetyl‑l‑aspartic acid 175.048 1.027 2.046 2.488 0.004 Up

Organic acids and their derivatives Tranexamic acid 157.111 5.076 2.038 2.602 0.001 Up

Alkaloids and their derivatives Colcemid 371.174 3.228 2.033 0.431 0.017 Down

Organo heterocyclic compounds Triflupromazine 352.122 0.601 2.017 0.373 0.002 Down

Organo heterocyclic compounds Oxomemazine 330.14 0.598 1.998 0.409 0.009 Down

Organic acids and their derivatives 4‑hydroxyprolylleucine 244.142 0.71 1.981 2.481 0.000 Up

Nucleosides, nucleotides, and their 
analogs

Succinyladenosine 383.108 3.11 1.973 2.46 0.002 Up

Organo heterocyclic compounds Tinidazole 247.063 7.007 1.955 0.356 0.000 Down

Organic acids and their derivatives Norepinephrine sulfate 249.031 2.652 1.941 2.918 0.001 Up

Organo heterocyclic compounds Flumequine 261.079 7.608 1.936 0.376 0.000 Down

Organic nitrogen compounds Mfcd00674434 323.282 8.478 1.934 2.844 0.001 Up

Supplementary Table 1: Potentially differential metabolites between LUADs and NL tissues groups in positive ion mode using untargeted 
metabolomics technique.
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Class Metabolites Molecular 
weight

Actual 
RT 

VIP Fold 
change

q‑value Expression

Alkaloids and their derivatives Berberine 336.124 8.438 1.9 2.396 0.001 Up

Nucleosides, nucleotides, and their 
analogs

7‑methylguanosine 297.107 2.549 1.891 2.134 0.002 Up

Benzenoids Sulfacetamide 214.042 2.475 1.876 0.458 0.006 Down

Vitamins and cofactors Pantothenic acid 219.111 3.042 1.875 2.112 0.000 Up

Organic acids and their derivatives N‑acetyl‑l‑glutamate 189.064 1.317 1.873 2.57 0.000 Up

Alkaloids and their derivatives Salsolinol 179.095 3.664 1.867 1.876 0.006 Up

Organic nitrogen compounds Triethylamine 101.121 0.698 1.824 1.838 0.001 Up

Benzenoids Niflumic acid 282.062 0.919 1.813 2.586 0.002 Up

Organo heterocyclic compounds Primidone 218.106 4.184 1.802 1.998 0.002 Up

Nucleosides, nucleotides, and their 
analogs

N2‑dimethylguanosine 311.123 3.052 1.745 1.943 0.002 Up

Alkaloids and their derivatives (13 alpha)‑2‑oxospartein‑13‑yl 
(2e)‑2‑methyl‑2‑butenoate

346.225 7.119 1.713 0.315 0.007 Down

Organic acids and their derivatives D‑ornithine 132.09 0.578 1.706 0.434 0.007 Down

Organic acids and their derivatives 2‑([2‑amino‑2‑carboxyethyl] 
thio) butanedioic acid

237.031 0.774 1.702 2.179 0.000 Up

Organic acids and their derivatives S‑(3‑oxo‑3‑carboxy‑n‑propyl) 
cysteine

221.036 0.929 1.689 2.488 0.007 Up

Organic nitrogen compounds Oleoyl ethanolamide 325.298 9.603 1.685 2.804 0.005 Up

Organic nitrogen compounds Α‑linolenoyl ethanolamide 321.267 9.146 1.676 2.344 0.001 Up

Organic acids and their derivatives N‑acetyl‑l‑phenylalanine 207.09 4.881 1.669 2.29 0.003 Up

Organic acids and their derivatives Glu‑glu 276.096 1.306 1.655 2.307 0.006 Up

Organo heterocyclic compounds Neopterin 253.08 0.748 1.637 1.854 0.001 Up

Benzenoids 5‑(4‑[2‑(methylamino) ethoxy] 
benzyl)‑1, 3‑thiazolidine‑2, 
4‑dione

280.088 4.747 1.629 1.436 0.011 Up

Benzenoids 3‑methoxy‑4‑hydroxyhippuric 
acid

225.064 3.974 1.617 0.205 0.022 Down

Nucleic acids Cyclic amp 329.053 2.227 1.607 0.724 0.018 Down

Organic acids and their derivatives Monomethyl phosphate 111.993 0.787 1.598 1.88 0.000 Up

Organo heterocyclic compounds 2‑ethyl‑4,5‑dimethylthiazole 125.084 0.707 1.589 2.418 0.014 Up

Organo heterocyclic compounds Pindolol 248.153 4.581 1.583 0.475 0.011 Down

Alkaloids and their derivatives Xanthosine 284.076 2.421 1.562 1.998 0.006 Up

Benzenoids Vorinostat 264.147 3.763 1.556 2.712 0.008 Up

Organo heterocyclic compounds Trolox 250.121 8.067 1.549 0.541 0.011 Down

Benzenoids Diethyl phthalate 222.09 7.219 1.549 0.477 0.025 Down

Organic nitrogen compounds Stearoylethanolamide 327.314 8.675 1.53 0.547 0.001 Down

Organo heterocyclic compounds 2‑(12‑tridecyn‑1‑yl) furan 246.199 8.544 1.528 3.208 0.016 Up

Benzenoids Propylparaben 180.079 7.22 1.502 0.492 0.021 Down

Supplementary Table 1: (Continued).

(Contd...)
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Class Metabolites Molecular 
weight

Actual 
RT 

VIP Fold 
change

q‑value Expression

Benzenoids Hostmaniane 254.116 7.22 1.501 0.476 0.021 Down

Homogeneous non‑metal 
compounds

Phosphoric acid 97.977 0.762 1.484 1.853 0.000 Up

Organic acids and their derivatives Indoxyl sulfate 213.01 0.806 1.444 5.107 0.041 Up

Organic acids and their derivatives Hmba 200.153 3.42 1.431 0.492 0.046 Down

Organic oxygen compounds N‑acetyl‑d‑galactosamine 221.09 0.695 1.423 1.842 0.002 Up

Organic acids and their derivatives N8‑acetylspermidine 187.169 0.592 1.409 2.305 0.008 Up

Alkaloids and their derivatives Indole‑3‑acetic acid 175.064 5.135 1.4 0.628 0.009 Down

Nucleosides, nucleotides, and their 
analogs

Inosine 268.081 1.959 1.396 2.466 0.010 Up

Organic acids and their derivatives N‑(3‑carboxy‑2‑ [carboxymethyl] 
‑2‑hydroxypropanoyl) glutamic 
acid

321.07 1.642 1.385 1.688 0.005 Up

Organic acids and their derivatives Phosphocreatine 211.036 0.772 1.382 0.183 0.048 Down

Organic nitrogen compounds Tris (hydroxymethyl) 
aminomethane

121.074 0.634 1.38 0.161 0.013 Down

Organic acids and their derivatives N6‑acetyl‑l‑lysine 188.116 0.926 1.372 1.895 0.014 Up

Nucleosides, nucleotides, and their 
analogs

1‑methylinosine 282.096 2.693 1.362 0.515 0.023 Down

Benzenoids 2,6‑di‑tert‑ butylhydroquinone 222.162 9.829 1.361 0.587 0.006 Down

Lipids and lipid‑like molecules 8z, 11z, 14z‑eicosatrienoic acid 306.256 9.825 1.36 1.581 0.002 Up

Organic acids and their derivatives Acetyl arginine 216.123 0.696 1.357 1.977 0.010 Up

Alkaloids and their derivatives 8‑methyl‑8‑azabicyclo 
(3.2.1) oct‑3‑yl (3s)‑1, 
2‑dithiolane‑3‑carboxylate

273.085 0.761 1.357 2.063 0.004 Up

Organo heterocyclic compounds Quinolinic acid 167.022 1.336 1.336 2.819 0.024 Up

Organic acids and their derivatives Asn‑pro 229.106 0.7 1.331 1.644 0.003 Up

Organic acids and their derivatives N3, n4‑dimethyl‑l‑arginine 202.143 0.676 1.326 1.766 0.032 Up

Sphingolipids Sphinganine 301.298 8.481 1.304 0.621 0.006 Down

Decanoylcarnitine 315.241 7.033 1.294 0.545 0.027 Down

Organic acids and their derivatives Fosfocreatinine 193.026 0.614 1.279 1.793 0.049 Up

Organic acids and their derivatives Argininosuccinic acid 290.122 0.654 1.267 1.721 0.042 Up

Organo heterocyclic compounds Xanthine 152.034 1.152 1.262 1.69 0.049 Up

Organic nitrogen compounds D‑sphingosine 299.282 8.365 1.261 0.656 0.007 Down

Benzenoids N‑Propyl gallate 212.068 0.619 1.254 1.716 0.020 Up

Organic acids and their derivatives Alanyltryptophan 275.128 9.319 1.244 1.647 0.002 Up

Nucleosides, nucleotides, and their 
analogs

8‑hydroxy‑deoxyguanosine 283.092 1.935 1.228 1.731 0.011 Up

Benzenoids Yu0650000 136.064 0.645 1.227 1.585 0.007 Up

Supplementary Table 1: (Continued).
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Class Metabolites Molecular 
weight

Actual 
RT 

VIP Fold 
change

q‑value Expression

Benzenoids 3‑methyl‑2‑oxo‑4‑phenylbutyl 
hydrogen sulfate

258.057 0.598 1.208 0.64 0.045 Down

Organic acids and their derivatives N‑palmitoyl‑l‑phenylalanine 403.309 9.853 1.187 0.54 0.023 Down

Licochalcone A 338.15 9.084 1.181 0.568 0.024 Down

Organic oxygen compounds 1‑phenyl‑1,3‑octadecanedione 358.287 10.02 1.159 1.693 0.045 Up

Terpenoids Steviol 318.219 9.085 1.155 2.509 0.049 Up

Organic acids and their derivatives 4‑hydroxy‑3‑(sulfooxy) benzoic 
acid

233.983 1.008 1.153 1.449 0.010 Up

Nucleosides, nucleotides, and their 
analogs

1‑methyladenosine 281.112 2.766 1.152 1.777 0.042 Up

Organic oxygen compounds D‑fructose 180.064 0.646 1.149 0.761 0.014 Down

Organic acids and their derivatives Nepsilon‑trimethyllysine 188.153 0.603 1.138 1.564 0.010 Up

Organic nitrogen compounds Docosatetraenoylethanolamide 375.314 10.02 1.105 1.589 0.047 Up

Peptides L‑homoserine 119.059 0.65 1.092 0.618 0.045 Down

Organo heterocyclic compounds Uracil 112.028 0.918 1.088 1.38 0.020 Up

Organic acids and their derivatives 3‑thiomorpholinecarboxylic 
acid

147.036 0.819 1.039 0.683 0.015 Down

Organic acids and their derivatives N6‑methyllysine 160.121 0.593 1.038 1.44 0.004 Up

Organo heterocyclic compounds Nicotinamide 122.048 1.029 1.029 1.415 0.016 Up

Organic acids and their derivatives Stachydrine 143.095 0.577 1.028 1.433 0.005 Up

Phenylpropanoids and polyketides Octinoxate 290.188 8.198 1.02 0.658 0.004 Down

Organic acids and their derivatives Pyruvic acid 88.016 0.857 1.002 1.388 0.014 Up
LUAD: Lung adenocarcinoma, NL: Normal lung, VIP: Variable importance in projection, RT: Retention time

Supplementary Table 1: (Continued). 

Class Metabolites Molecular 
weight

Actual 
RT

VIP Fold 
change

q‑value Expression

Organic acids and their 
derivatives

N‑palmitoyl‑l‑tyrosine 419.303 9.888 2.389 6.216 0.000 Up

Organic acids and their 
derivatives

3‑indoxyl sulfate 213.009 3.036 2.226 0.28 0.001 Down

Benzenoids Phenylpyruvic acid 164.047 3.503 2.164 4.809 0.000 Up

Phenylpropanoids and 
polyketides

L‑(‑)‑3‑phenyllactic acid 166.063 3.01 2.044 3.847 0.000 Up

Organic acids and their 
derivatives

N‑acetylvanilalanine 253.095 2.472 1.961 2.796 0.003 Up

Benzenoids Mitotane 317.955 0.686 1.953 0.275 0.000 Down

Phenylpropanoids and 
polyketides

Dl‑4‑ hydroxyphenyllactic acid 182.058 1.26 1.939 3.73 0.000 Up

Supplementary Table 2: Potentially differential metabolites between LUADs and NL tissues groups in negative ion mode using untargeted 
metabolomics technique.
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Class Metabolites Molecular 
weight

Actual 
RT

VIP Fold 
change

q‑value Expression

Organic acids and their 
derivatives

N‑([2s]‑2‑hydroxypropanoyl) methionine 221.072 2.752 1.898 2.971 0.001 Up

Lipids and lipid‑like 
molecules

Thromboxane b2 370.235 6.926 1.834 3.573 0.000 Up

Alkaloids (+)‑castanospermine 189.1 2.777 1.814 2.87 0.001 Up

Benzenoids Sertraline 305.074 0.646 1.803 3.076 0.003 Up

Organic acids and their 
derivatives

N‑acetyl‑1‑aspartylglutamic acid 304.09 0.589 1.705 3.162 0.000 Up

Nucleosides, 
nucleotides, and their 
analogs

Xanthosine 284.075 2.576 1.667 2.861 0.012 Up

Organic acids and their 
derivatives

Oxoglutaric acid 146.022 0.629 1.59 0.58 0.008 Down

Nucleosides, 
nucleotides, and their 
analogs

1‑(beta‑d‑ribofuranosyl) thymine 258.085 0.646 1.588 0.41 0.000 Down

Homogeneous 
non‑metal compounds

Pyrophosphoric acid 177.943 0.638 1.566 2.576 0.000 Up

Organic oxygen 
compounds

Pantothenic acid 219.11 1.595 1.539 2.104 0.000 Up

Organic acids and their 
derivatives

N‑acetyl‑l‑phenylalanine 207.089 3.749 1.535 2.343 0.001 Up

Organic acids and their 
derivatives

N‑(2‑[(2‑amino‑2‑carboxyethyl) 
amino]‑2‑carboxyethyl) aspartic acid

307.101 2.666 1.533 0.188 0.032 Down

Benzenoids 1‑(4‑methoxyphenyl)‑3‑pentanyl hydrogen 
sulfate

274.087 5.295 1.504 0.481 0.026 Down

Organo heterocyclic 
compounds

227689 207.039 4.325 1.498 0.189 0.050 Down

Benzenoids Mandelate 152.047 3.213 1.452 2.947 0.022 Up

Organic oxygen 
compounds

4‑o‑(a‑d‑glucopyranosyl) moranoline 325.137 0.715 1.397 1.715 0.001 Up

Organic oxygen 
compounds

5‑o‑methyl embelin 308.199 7.594 1.394 12.631 0.027 Up

Nucleosides, 
nucleotides, and their 
analogs

Cdp‑ethanolamine 446.061 0.693 1.394 0.46 0.005 Down

Phenylpropanoids and 
polyketides

4’‑methyl‑epigallocatechin‑3’‑glucuronide 496.124 1.374 1.383 1.709 0.008 Up

Benzenoids 5‑(4‑[2‑(methylamino) ethoxy] 
benzyl)‑1,3‑thiazolidine‑2,4‑dione

280.088 4.974 1.376 1.534 0.011 Up

Polyketides Oleandolide 386.23 6.182 1.358 1.892 0.011 Up

Phenylpropanoids and 
polyketides

3,4,5‑trimethoxyhydrocinnamic acid 240.099 6.018 1.344 0.47 0.015 Down

Supplementary Table 2: (Continued).
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Class Metabolites Molecular 
weight

Actual 
RT

VIP Fold 
change

q‑value Expression

Organic acids and their 
derivatives

Citrate 192.027 0.633 1.336 0.633 0.010 Down

Organic acids and their 
derivatives

L‑(+)‑lactic acid 90.032 0.667 1.332 1.678 0.000 Up

Organic oxygen 
compounds

L‑threonic acid 136.037 0.647 1.322 0.521 0.001 Down

Benzenoids Diphenyl disulfide 218.023 0.59 1.292 0.644 0.017 Down

Organic acids and their 
derivatives

4‑([2‑hydroxy‑4‑methylpentanoyl] 
amino)‑7‑isobutyl‑3‑isopropyl 
‑5,8‑dioxo‑2‑oxa‑6,9‑diazabicyclo (10.2.2) 
hexadeca‑1 (14),12,15‑triene ‑10‑carboxylic acid

519.293 10.202 1.283 1.892 0.030 Up

Organic acids and their 
derivatives

3‑hydroxysebacic acid 218.115 3.707 1.282 0.753 0.044 Down

Organic oxygen 
compounds

1‑phenyl‑1,3‑octadecanedione 358.287 10.445 1.281 2.08 0.004 Up

Fatty acyls Ethyl docosahexaenoate 356.271 10.184 1.258 1.962 0.005 Up

Organic oxygen 
compounds

Δ‑gluconic acid δ‑lactone 178.048 0.64 1.241 0.552 0.009 Down

Lipids and lipid‑like 
molecules

8z, 11z, 14z‑eicosatrienoic acid 306.256 10.095 1.241 1.634 0.000 Up

Organo heterocyclic 
compounds

2‑amino‑6‑(1,2‑dihydroxypropyl) ‑4 
(1h)‑pteridinon

237.085 6.518 1.224 0.397 0.021 Down

Organic acids and their 
derivatives

N‑(3‑carboxy‑2‑[carboxymethyl] 
‑2‑hydroxypropanoyl) glutamic acid

321.069 0.576 1.217 1.578 0.000 Up

Organic acids and their 
derivatives

N, n‑dimethylarginine 202.143 0.799 1.212 1.854 0.026 Up

Lipids and lipid‑like 
molecules

11(z),14(z)‑eicosadienoic acid 308.271 10.37 1.176 1.609 0.000 Up

Organic acids and their 
derivatives

Meprobamate 218.126 0.951 1.157 1.666 0.030 Up

Lipids and lipid‑like 
molecules

Myristic acid 228.209 9.25 1.145 1.971 0.010 Up

Benzenoids Paradol 278.188 8.196 1.128 1.743 0.045 Up

Organic acids and their 
derivatives

Leucylasparagine 245.137 0.721 1.123 1.427 0.026 Up

Organic acids and their 
derivatives

Met‑gln 277.108 2.992 1.109 0.593 0.002 Down

Nucleosides, nucleotides, 
and their analogs

8‑hydroxy‑deoxyguanosine 283.091 0.721 1.096 1.768 0.025 Up

Organo heterocyclic 
compounds

Miglitol 207.11 0.678 1.051 1.587 0.018 Up

Nucleosides, nucleotides, 
and their analogues

Uridine 5′‑diphosphate 404.002 0.634 1.049 0.242 0.013 Down

Lipids and lipid‑like 
molecules

Cis‑5,8,11,14,17‑eicosapentaenoic acid 302.224 9.669 1.042 1.523 0.035 Up

LUAD: Lung adenocarcinoma, NL: Normal lung, VIP: Variable importance in projection, RT: Retention time

Supplementary Table 2: (Continued).
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Class Metabolites VIP Fold change P‑value q‑value Expression

Fatty acids 3‑methyladipic acid 2.235 2.918 0.000 0.012 Up

Myristic acid 0.892 1.312 0.027 0.107 Up

Pimelic acid 2.113 2.573 0.000 0.012 Up

Arachidonic acid 0.883 1.301 0.023 0.106 Up

Eicosapentaenoic acid (Epa) 1.383 1.807 0.005 0.043 Up

Docosahexaenoic acid dha 1.288 1.619 0.002 0.024 Up

Adrenic acid 1.113 1.482 0.031 0.116 Up

Docosatrienoic acid 1.521 1.927 0.005 0.043 Up

8,11,14‑eicosatrienoic acid 1.512 1.809 0.001 0.018 Up

11c, 14c‑eicosadienoic acid 0.987 1.467 0.032 0.116 Up

Docosapentaenoic acid dpa 0.901 1.422 0.023 0.106 Up

2‑hydroxy‑4‑(methylthio) butanoate 0.985 1.383 0.018 0.092 Up

Cis‑11,14,17‑eicosatrienoic acid 1.513 1.780 0.001 0.018 Up

13c, 16c‑docosadienoic acid 0.942 1.373 0.040 0.144 Up

Octanoic acid 1.594 0.201 0.015 0.090 Down

Decanoic acid 1.252 0.291 0.045 0.146 Down

Dodecanoic acid 1.416 0.378 0.005 0.043 Down

Sebacic acid 2.304 0.191 0.000 0.012 Down

Tridecanoic acid 0.880 0.780 0.024 0.106 Down

2‑ethylhexanoic acid 1.642 0.189 0.014 0.087 Down

Amino acids Gamma‑aminobutyric acid 2.268 3.162 0.000 0.012 Up

L‑phenylalanine 0.724 1.312 0.043 0.146 Up

L‑alanine 1.141 1.525 0.004 0.038 Up

L‑proline 1.207 1.501 0.013 0.081 Up

L‑threonine 1.020 1.448 0.026 0.106 Up

L‑serine 1.107 1.479 0.019 0.098 Up

Phosphoserine 1.941 2.583 0.004 0.038 Up

N‑acetyl‑l‑aspartic acid 2.665 5.480 0.007 0.056 Up

3‑chlorotyrosine 1.175 1.430 0.004 0.038 Up

2‑aminoisobutyric acid 1.644 1.942 0.003 0.030 Up

N‑phenylacetylphenylalanine 1.105 1.518 0.021 0.102 Up

N‑methyl‑d‑aspartic acid 1.024 1.333 0.028 0.109 Up

5‑aminopentanoic acid 1.162 1.402 0.043 0.146 Up

Selenomethionine 1.252 1.643 0.024 0.106 Up

N‑a‑acetyl‑l‑arginine 1.375 1.733 0.027 0.106 Up

N‑acetylglutamine 1.209 1.568 0.015 0.090 Up

N‑acetyl‑l‑histidine 1.268 1.658 0.022 0.106 Up

N‑acetylproline 1.438 2.010 0.045 0.146 Up

Ornithine 1.211 0.566 0.017 0.090 Down

Supplementary Table 3: Potentially differential metabolites between LUADs and NL tissue groups using targeted metabolomics technique.
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Class Metabolites VIP Fold change P‑value q‑value Expression

Organic acids Phosphoenolpyruvic acid 0.878 1.388 0.043 0.146 Up

Acetoacetic acid 1.419 1.483 0.027 0.106 Up

Fumaric acid 1.481 1.764 0.025 0.106 Up

L‑malic acid 1.376 1.562 0.000 0.012 Up

Maleic acid 1.519 1.717 0.016 0.090 Up

L‑lactic acid 1.240 1.451 0.005 0.043 Up

Oxoglutaric acid 1.250 1.575 0.002 0.024 Up

Quinolinic acid 2.389 3.274 0.003 0.037 Up

Vanillymandelic acid 1.569 1.739 0.000 0.012 Up

3‑methyl‑2‑oxovaleric acid 1.625 2.242 0.011 0.077 Up

Senecioic acid 2.349 3.281 0.005 0.043 Up

Ketoleucine 1.687 2.341 0.001 0.018 Up

Threonic acid 1.202 1.504 0.017 0.090 Up

Benzenoids 4‑hydroxybenzoic acid 2.035 0.019 0.041 0.145 Down

4‑hydroxyphenylpyruvic acid 3.508 8.510 0.000 0.012 Up

L‑3‑phenyllactic acid 3.192 11.326 0.000 0.013 Up

3-Phenyllactic acid (PhLA) 2.900 8.043 0.001 0.021 Up

Pyridoxal 5’‑phosphate 1.767 1.965 0.000 0.012 Up

Protocatechuic acid 1.001 1.380 0.013 0.081 Up

4‑aminohippuric acid 1.596 1.955 0.001 0.014 Up

Gallic acid 1.085 1.374 0.016 0.090 Up

Carbohydrates D‑xylose 1.777 2.154 0.002 0.024 Up

D‑gluconolactone 1.364 1.837 0.025 0.106 Up

N‑acetylneuraminic acid 1.314 1.614 0.027 0.106 Up

Erythronic acid 1.253 1.543 0.011 0.077 Up

Gluconic acid 1.368 1.841 0.026 0.106 Up

Glyceraldehyde 1.866 2.295 0.001 0.018 Up

Bile acids 3,6‑diketocholanic acid methyl ester 1.011 1.418 0.002 0.024 Up

Dehydrocholic acid 1.221 1.364 0.006 0.045 Up

Dioxolithocholic acid 1.270 1.530 0.010 0.077 Up

Etiadienic acid 1.153 1.421 0.016 0.090 Up

Carnitines Propionylcarnitine 1.483 1.949 0.008 0.061 Up

Butyrylcarnitine 1.695 3.034 0.045 0.146 Up

Phenylpropanoicacids Hydroxyphenyllactic acid 1.841 1.928 0.002 0.024 Up

3,4,5‑trimethoxycinnamic acid 1.243 1.640 0.013 0.081 Up

Indoles 3‑indolebutyric acid 0.874 1.358 0.046 0.146 Up

Peptides Glycyl‑l‑leucine 1.445 2.943 0.029 0.111 Up

Pyridines Nicotinic acid 1.262 1.498 0.011 0.077 Up
LUAD: Lung adenocarcinoma, NL: Normal lung, VIP: Variable importance in projection

Supplementary Table 3: (Continued).
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