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ABSTRACT
Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group 
a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains 
unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) 
in vascular smooth muscle cells (VSMCs) in hypertension.

Material and Methods: First, models of VSMC with Nur77, nucleotide-binding oligomerization domain-
like receptor family caspase recruitment domain containing 3 (NLRC3) and tumor necrosis factor receptor-
associated factor 6 (TRAF6) knockdown or overexpression were constructed using Short Hairpin RNA 
(Nur77) or pcDNA3.1 vector, respectively. Next, the putative-binding motifs between Nur77 and NLRC3 
promoters were detected by dual luciferase assay. We conducted reverse transcription quantitative polymerase 
chain reaction (qPCR) and Western blot (WB) analysis to detect Nur77, NLRC3, and TRAF6 levels in VSMCs. 
Then, cell counting kit-8 assay, 5-ethynyl-2’-deoxyuridine assay, wound-healing assay, enzyme-linked 
immunosorbent assay, and 2’,7’-dichlorofluorescin diacetate were employed to examine the impact of the 
knockdown or overexpression of Nur77, NLRC3, and TRAF6 on VSMCs treated with Ang II. The assays 
measured cell viability and proliferation, cell migration, malondialdehyde levels, and reactive oxygen species 
levels.

Results: The overexpression of Nur77 repressed cell growth (P < 0.001), migration (P < 0.01), and oxidative 
stress (P < 0.01) induced by Ang II in VSMCs. Nur77 transcriptionally promoted the expression of NLRC3 
(P < 0.001), and the upregulation of NLRC3 suppressed cell proliferation (P < 0.05) and oxidative stress 
(P < 0.001) mediated by Ang II. Furthermore, NLRC3 negatively regulated the TRAF6/nuclear factor-kappa B 
(NF-κB) axis activated by Ang II, which resulted in the repression of hyperproliferation of VSMCs (P < 0.01) 
and oxidative stress (P < 0.001).

Conclusion: Nur77 suppressed growth and oxidative stress induced by Ang II in VSMCs by promoting NLRC3 
transcription, which, further, repressed the TRAF6/NF-κB axis. This understanding provides novel insights into 
the pathogenesis of hypertension.
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INTRODUCTION

Hypertension, which is defined as a blood pressure of 
≥140/90 mmHg,[1] is a leading contributor to early mortality. 
It is a gradually progressive chronic condition that impacts 
over one billion adults (30–79  years old) globally.[2] 
Hypertension significantly contributes to the increased risk 
of various brain and cardiovascular diseases.[3,4] Reactive 
oxygen species (ROS) produced by oxidative stress have been 
proven to adversely affect cells and then lead to cell death in 
hypertension.[5] Chronic hypertension results in impaired 
endothelium-dependent relaxation, increased arterial 
stiffness, enhanced contractility, inflammation, vascular 
calcification, and remodeling. Oxidative stress has been 
confirmed to aggravate these dysfunctions.[6] Angiotensin II 
(Ang II) was reported as one of the ROS inducers in vascular 
cells.[7] A study found that ROS was involved in endothelial 
function and the regulation of vascular tone in the vascular 
system; increased ROS production or weakened antioxidant 
defense can lead to dysfunction in vascular smooth muscle 
cells (VSMCs), which can result in the progression of 
hypertension.[8] In VSMCs, ROS induced by Ang II can lead 
to changes of vascular reactivity, growth, calcification, and 
fibrosis, which affect vascular remodeling.[9] Characterizing 
the underlying molecular mechanisms of antioxidant defense 
to identify potential therapeutic targets is imperative to 
improve the treatment of hypertension.

Nuclear receptor subfamily 4 group a member 1 (Nur77) 
plays critical roles in maintaining vascular homeostasis by 
regulating oxidative stress and vascular remodeling.[10] Nur77 
was found to attenuate endothelial dysfunction through 
activating antioxidant pathways and reducing the production 
of ROS in vascular endothelium.[11] The knockout of Nur77 
increased the ROS production in the aorta of mice.[11] In 
addition, the expression of Nur77 in pulmonary arteries was 
significantly reduced in patients with pulmonary arterial 
hypertension,[12] whereas the overexpression of Nur77 
significantly repressed the proliferation and migration 
of VSMCs.[13] Nur77 also attenuated oxidative stress by 
inhibiting the phosphorylated recombinant inhibitory 
subunit of nuclear factor-kappa B alpha (NF-κB) in the cell 
model of Parkinson’s disease.[14] However, the molecular 
mechanism of Nur77 in regulating vascular oxidative stress 
in hypertension remains unclear.

Nucleotide-binding oligomerization domain-like receptor 
family caspase recruitment domain containing 3 (NLRC3) 
is an innate immune sensor that participates in regulating 
inflammation pathways.[15,16] NLRC3 was found to 
inhibit the proliferation of artery smooth muscle cells 
stimulated by platelet-derived growth factor through the 
phosphatidylinositol 3-kinase/protein kinase B pathway.[17] 
The NF-κB pathway regulates oxidative stress and is activated 
in hypertension.[15,18,19] A previous study reported that 

endothelial tumor necrosis factor receptor-associated 
factor 6 (TRAF6) deficiency decreased atherosclerosis 
through repressing the expression of proinflammatory 
gene downstream of NF-κB and monocyte adhesion.[20] At 
present, whether NLRC3 is involved in oxidative stress in 
hypertension through TRAF6/NF-κB is unclear.

Given that the mechanism of Nur77 in hypertensive 
oxidative stress remains unknown, we analyzed the potential 
transcriptional targets of Nur77 and explored the crosstalk 
mechanism among Nur77, NLRC3, and NF-κB in VSMCs. 
Our study aims to offer new insights into the mechanisms 
underlying hypertension induced by Ang II and identify 
potential therapeutic targets.

MATERIAL AND METHODS

Cell culture

Human VSMCs (Cat. #CRL-1999, American Type  Culture 
Collection, identified by mycoplasma and STR) were 
maintained in F-12K nutrient medium (Cat. #30-2004, 
ATCC, USA) supplemented with fetal bovine serum 
(FBS), endothelial cell growth supplement, ascorbic 
acid (Cat. # A4544, Sigma, USA), 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (Cat. #H4034, Sigma, USA), 
transferrin (Cat. # T8158, Sigma, USA), insulin (Cat. # 
I3536, Sigma, USA), sodium selenite (Cat. #S5261, Sigma, 
USA), and thermal energy storage (Cat. #V900476, Sigma, 
USA). VSMCs were treated with Ang II (Cat. #305-23-0101, 
Sigma, USA) (2 µM, 24 h) to mimic their dynamics during 
hypertension.[21]

Cell transfection

The overexpression vectors for Nur77 (NM_001202233.2), 
NLRC3 (NM_178844.4), and TRAF6 (NM_004620.4) were 
constructed using the pcDNA3.1 vector (Cat. #V79020, 
Thermo Fisher Scientific, Waltham, Massachusetts, USA) 
by inserting their full length sequences. The sequences were 
digested using the corresponding endonuclease, and then, 
they were connected to the pcDNA3.1 vector. The knockdown 
vector of Nur77  (5’-TGGTGAAGGAAGTTGTCCGAA-3’) 
was generated by GenePharm (Shanghai, China). When the 
cells in the plates reached a confluence level of 80–90%, 4 
µg of plasmid DNA (dissolve in 10 µL ddH2O) was mixed 
with 10 µL of Lipofectamine 2000 (Cat. #11668019, Thermo 
Fisher Scientific, Waltham, Massachusetts, USA) and 250 
µL of serum-free medium. The mixture was incubated for 
20 min before being added to the wells plated in 6-well plates.

Cell counting kit-8 (CCK-8)

The viability of cells was determined using CCK-8 kits (Cat. 
#ab228554, Abcam, Cambridge, UK). The cells (1 × 104) were 
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planted and cultured in a 96-well plate for 24  h. Then, 10 
µL of CCK-8 solution was added and incubated in the dark 
for 3 h. The absorbance was measured at λ = 460 nm using 
a microplate reader (TECAN Spark®, Tecan Group  Ltd., 
Switzerland).

5-Ethynyl-2’-deoxyuridine

Cell growth was determined using the 5-ethynyl-2’-
deoxyuridine (EdU) kit (Cat. #ab222421, Abcam, 
Cambridge, UK). A  total of 10 µM of EdU was added 
to cells at a confluence level of 60–70% for 4  h and then 
fixed in 4% paraformaldehyde (Cat. #E672002, Sangon, 
Shanghai, China) before permeabilization. The fixative 
was discarded, and the cells were washed with phosphate-
buffered saline (PBS) 3  times, with 5  min each time. 
Then, the Apollo staining solution was added into the cell, 
followed by incubation at room temperature without light. 
4’-6-diamidino-2-phenylindole (DAPI, Beyotime, Shanghai, 
China) was used for nuclear staining. The cells were observed 
using a fluorescence microscope (Nikon TSR2, Japan). 
Image J software was employed to quantify the intensity of 
fluorescence.

Wound-healing assay

The 2.5×106 cells were planted in 12 well plates of 10 mL 
Dulbecco’s Modified Eagle medium containing 10% fetal 
bovine serum. When the cells achieved a confluence of 
100%, cells in every well were scraped with a 1 mm scraper. 
After three washes with PBS, the cells were cultured with 
the serum free medium. After 24 h treatment, the migration 
distance was recorded and photographed at 0 and 24 h. Image 
acquisition was conducted using a fluorescent microscope 
(Nikon TSR2, Japan).

Transwell assay

A total of 0.5  mL of cell suspension (1 × 105/mL) in FBS-
free media was planted in migration chambers, with 
FBS-containing medium (0.5  mL) in the lower well. 
After incubation for 24  h, the inserts were removed and 
washed with pre-chilled PBS before fixing the cells in 
4% paraformaldehyde and staining in 1% crystal violet 
(Songon, Shanghai). Any cell presented in the inner section 
of the inserts was delicately wiped away using a cotton 
swab. A microscope (Nikon TSR2, Japan) was used to count 
migration cells on the external surface, and images of these 
cells were captured.

ROS

ROS was evaluated using 2’,7’-dichlorofluorescin diacetate 
(DCFH-DA) (Cat. # D6883, Sigma–Aldrich, USA). In brief, 

after 24 h treatment with Ang II, the medium was changed to 
serum-free medium with 10 µM of DCFH-DA. Then, it was 
incubated in dark at 37°C for 30 min. Images were captured 
using a fluorescent microscope (Nikon TSR2, Japan),[22] 
Image J software was employed to quantify the intensity of 
fluorescence. DAPI (Beyotime, Shanghai, China) was used 
for nuclear staining.

Enzyme-linked immunosorbent assay (ELISA)

Superoxide dismutase (SOD) (Cat. #19160, Sigma, USA), 
Glutathione peroxidase (GSH-PX) (Cat. #ab193767, Abcam, 
Cambridge, UK), and malondialdehyde (MDA) (Cat. 
#ab238537, Abcam, Cambridge, UK) levels in cell lysate were 
detected by ELISA.

For malondialdehyde (MDA) detection, 50 µL of 
appropriately diluted bovine serum albumin-conjugated 
MDA standards or samples were added to the 96-well plate 
and incubated for 10 min at ambient temperature. Then, the 
plate was incubated with 50 µL of anti-MDA antibody for 
1 h. After the plate was washed 3 times, secondary antibody 
– horseradish peroxidase (HRP) conjugate (100 µL) was 
added. The substrate solution was added after three washes. 
Next, a stop solution was added to the plate followed by 
the absorbance measured at λ = 450 nm. All samples were 
assessed in triplicate.

For SOD detection, 100 µL of appropriately diluted standards 
and samples was added before the addition of 50 µL of HRP 
conjugate to all wells. Following a 3 h incubation and three 
washes, tetramethyl benzene (TMB) substrate solution 
(100 µL) was added and incubated for 10 min. Then, 100 µL 
of stop solution was added, and the absorbance was measured 
at λ = 450 nm.

To detect glutathione peroxidase (GSH-PX), 50 µL of 
appropriately diluted standards and samples were added, 
followed by adding 50 µL of antibody cocktail. After 1  h 
incubation and three washes, 100 µL of TMB was added. 
Then, 100 µL of stop solution was added, and the absorbance 
was measured at λ = 450 nm.

The total protein concentration was determined using the 
bicinchoninic acid assay (BCA) (Pierce, Bonn, Germany). 
The results were presented as the activity or content of SOD, 
MDA, and GSH-PX per mg protein.

Luciferase assay

The putative-binding motifs between the Nur77 and NLRC3 
promoters were analyzed using the JASPAR database (https://
jaspar.elixir.no/). The promoter region of NLRC3 was cloned 
from human VSMCs. Site-directed mutagenesis of the 
NLRC3 promoter was achieved using a commercial kit (NEB 
#E0554, Ipswich, MA, USA). A  wild-type (WT) or mutant 



Shen, et al.: Nur77 inhibits Ang Ⅱ-induced oxidative stress in VSMCs

CytoJournal • 2024 • 21(43) | 4

NLRC3 promoter was inserted into the pGL6 reporter vector 
(Beyotime, Shanghai, China). A  luciferase assay kit (Cat. 
#E1910, Promega, Madison, Wisconsin, USA) was used to 
evaluate luciferase activity. Co-transfection of the Nur77 
overexpression vector with WT/MUT-NLRC3 in VSMCs 
was performed for 48 h in 96-well plates. Complete medium 
by itself acted as blank control. The luciferase assay reagent 
II (100 µL) was added to the cell lysate (20 µL) to record the 
firefly luciferase activity immediately. Then, Renilla luciferase 
activity was determined after the addition of Stop and Glo 
Reagent (100 µL).

Western blot analysis

Total protein was extracted from cells using 
radioimmunoprecipitation assay buffer added with a 
protease inhibitor cocktail (Cat. #11697498001, Roche, 
Basel, Switzerland), and the concentration was measured 
through BCA (Pierce, Bonn, Germany). Subsequently, 
proteins (25  µg) were loaded in 12% sodium dodecyl 
sulfate  polyacrylamide  gel electrophoresis (SDS–PAGE) 
before transferring to a polyvinylidene difluoride membrane. 
After blocking for 1  h with 5% skim milk (Cat. #1.15363, 
Sigma, USA) and incubation at 4°C overnight with indicated 
primary antibodies, followed by washing with tris buffered 
saline plus tween-20 (TBST, Cat. #T9039, Sigma, USA), the 
membrane was incubated with HRP-conjugated secondary 
antibody (1:2 000, Cat. #58802, CST). A chemiluminescence 
kit (Cat. #1705060S, BIO-RAD, Hercules, California, USA) 
was used for blot development. The images were acquired 
using the ChemicDoc XRS system (Bio-Rad, USA). Image J 
software was employed to quantify the gray value of bands. 
The following primary antibodies were used: NLRC3 (1:1000, 
Cat. #ab77817, Abcam), TRAF6  (1:1000, Cat. #8028, CST, 
Danvers, Massachusetts, USA), Nur77  (1:1000, Cat. #3960, 
CST), phosphorylated p65 (Ser536) (1:1000, Cat. #3031, 
CST), phosphorylated inhibitory subunit of nuclear factor-
kappa B alpha (IκBα) (Ser32) (1:1000, Cat. #2859, CST), and 
glyceraldehyde phosphate dehydrogenase (GAPDH, 1:1000, 
Cat. #5174, CST).

RNA isolation and real-time quantitative polymerase 
chain reaction (qPCR)

RNA extraction was conducted using an RNA isolation kit 
(Cat. # 74104, QIAGEN, Hilden, Germany). Complementary 
DNAs were prepared using a commercial reverse 
transcription kit (Cat. #4368814, Applied Biosystems). 
A  Synergetic Binding Reagent (SYBR) Green PCR kit 
(Cat. #1725270, BIO-RAD, Hercules, CA, United States) 
was used to conduct qPCR. Glyceraldehyde 3-phosphate 
dehydrogenase  (GAPDH) was used as reference. The 
expression levels of genes were calculated using the 2−ΔΔCt 
formula. The sequences of primers for the genes of interest 

were as follows:
•	 Nur77-F: 5’-ACCCACTTCTCCACACCTTG-3’
•	 Nur77-R: 5’-ACTTGGCGTTTTTCTGCACT-3’
•	 NLRC3-F: 5’-CTGGGAAGGGCAGTCAAG-3’
•	 NLRC3-R: 5’-TGCCTCTGT ATCCTTGAGTC-3’
•	 TRAF6-F: 5’-TCGAACCCTTGAGGACAAAG-3’
•	 TRAF6-R: 5’-CGGGTTTGCCAGTGTAGAAT-3’
•	 GAPDH-F: 5’-CCAGGTGGTCTCCTCTGA-3’
•	 GAPDH-R: 5’-GCTGTAGCCAAATCGTTGT-3’.

Statistical analysis

The experiments were conducted no less than <3  times. 
Data were shown as mean ± standard deviation. Students’ 
t-test was performed to assess the significance and between-
group differences were assessed for statistical significance. 
One-way analysis of variance followed with a post hoc test 
was conducted for multigroup comparisons. GraphPad 
(GraphPad Software Inc., San Diego, CA) was used to 
analyze data. P < 0.05 was considered indicative of statistical 
significance. All experiments were performed with three 
independent biological replicates and three technical 
replicates.

RESULTS

Overexpression of Nur77 represses cell growth and 
oxidative stress mediated by Ang II

We overexpressed Nur77 in human VSMCs to explore the 
function of Nur77 in cell damage and redox imbalance 
induced by Ang II. We also observed the mRNA of 
Nur77 enhanced at 24 h (P < 0.05), 48 h (P < 0.001), and 
72  h (P < 0.001) compared with that of the vector group 
[Figure  1a]. We further detected the protein expression 
levels of Nur77 significantly increased at 24  h (P < 0.05), 
48 h (P < 0.01), and 72 h (P < 0.001) compared with those 
of the vector group [Figure  1b and c]. The treatment of 
VSMCs with Ang II promoted cell viability (P < 0.05), 
while the overexpression of Nur77 suppressed the effect 
of Ang II (P < 0.001) [Figure  1d]. Furthermore, the 
overexpression of Nur77 repressed cell proliferation 
promoted by Ang II (P < 0.001) [Figure  1e and f]. 
Ang II promoted the migration of VSMCs, while the 
overexpression of Nur77 inhibited this effect of Ang II on 
migration (P < 0.01) [Figure  1g-j]. The treatment of Ang 
II enhanced the level of ROS, while the overexpression of 
Nur77 reduced ROS elevation induced by Ang II (P < 0.01) 
[Figure  1k and l]. Similarly, the overexpression of Nur77 
repressed the increment in MDA (P < 0.05), the reduction 
in SOD (P < 0.01), and the decrease in GSH-PX (P < 0.05) 
induced by Ang II in VSMCs [Figures  1m-o]. Our data 
suggested that Nur77 repressed the growth and migration 
induced by Ang II in VSMCs.
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Figure 1: Overexpression of Nur77 represses cell growth and oxidative stress mediated by Angiotensin II (Ang II). (a-c) Reverse transcription 
quantitative polymerase chain reaction (a) and Western blot analysis (b and c) were conducted to detect the expression levels of Nur77 at 24, 
48, and 72 h in vascular smooth muscle cells (VSMCs) after being treated with vector or oe-Nur77 (n = 3). (d) Cell viability of the VSMCs 
treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-Nur77 were determined by cell counting kit-8 assay 
(n = 3). (e and f) Proliferation of the VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-Nur77 
was assessed by the EdU assay (n = 3). (g and h) Migration of VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang 
II (2 µM) + oe-Nur77 at 0 and 24 h was evaluated by the wound-healing assay (n = 3). (i and j) Transwell assay was performed to assess the 
migration capacity of VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) +vector, and Ang II (2 µM) + oe-Nur77 (n = 3). Crystal violet 
was used to stain migration cell. (k and l) Reactive oxygen species production of VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) 
+ vector, and Ang II (2 µM) + oe-Nur77 was measured by 2’,7’-dichlorofluorescin diacetate (n = 3). (m-o) Enzyme-linked immunosorbent 
assay was employed to determine the levels of malondialdehyde, superoxide dismutase, and glutathione peroxidase of VSMCs treated with 
vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-Nur77 (n = 3). (* P < 0.05, ** P < 0.01, *** P < 0.001. EdU: 5-ethynyl-
2’-deoxyuridine, AngII: Angiotensin II, Nur77: Nuclear receptor subfamily 4 group a member 1)
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Nur77 transcriptionally promotes the expression of 
NLRC3

We used the JASPAR software to analyze the potential 
transcriptional target of Nur77 for determining its 
molecular mechanism in hypertensive vascular remodeling. 
The results displayed the binding between Nur77 and 
the NLRC3 promoter [Figure  2a]. The overexpression 
of Nur77 enhanced luciferase activity in cells expressing 
the WT-NLRC3 promoter  but did not those expressing 
the MUT-NLRC3 promoter (P < 0.001) [Figure  2b]. In 
addition, we knocked down Nur77 in VSMCs using sh-
Nur77 (P < 0.01) [Figure 2c-e]. NLRC3 mRNA and protein 

levels were upregulated after transfection with Nur77 
overexpression (P < 0.001) [Figure 2f-h]. The knockdown of 
Nur77 reduced the mRNA (P < 0.05) and protein (P < 0.01) 
expression of NLRC3 [Figure 2f-h]. These findings indicated 
that Nur77 promoted the transcription of NLRC3 and 
upregulated the expression of NLRC3.

Upregulation of NLRC3 suppresses cell growth and 
oxidative stress dependent on Ang II

We overexpressed NLRC3 in VSMCs to explore the potential 
involvement of NLRC3 in regulating oxidative stress induced by 

Figure 2: Nur77 transcriptionally promotes the expression of NLRC3. (a) Jaspar Database of Transcription Factor Binding Site (JASPAR) 
predictions for putative Nur77 binding region in the NLRC3 promoter. (b) Relative luciferase activity of NLRC3 reporter in vascular smooth 
muscle cells (VSMCs) transfected with vector or Nur77 evaluated by dual-luciferase assay (n = 3). (c) Reverse transcription quantitative 
polymerase chain reaction (RT-qPCR) and (d and e) Western blot analysis were conducted to detect the expression levels of Nur77 in VSMCs 
after being treated with sh-NC or sh-Nur77 (n = 3). (f) RT-qPCR and (g and h) Western blot analysis were performed to determine the 
expression of NLRC3 in VSMCs transfected with oe-Nur77, sh-NC, or sh-Nur77 (n = 3). (* P < 0.05, ** P < 0.01, *** P < 0.001. AngII: 
Angiotensin II, Nur77: Nuclear receptor subfamily 4 group a member 1, NLRC3: Nucleotide-binding oligomerization domain-like receptor 
family caspase recruitment domain containing 3.)
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Ang II in VSMCs. The transfection of VSMCs with the NLRC3 
overexpression plasmid increased the mRNA (P < 0.001) and 
protein (P < 0.01) expression of NLRC3 [Figure  3a-c]. The 
upregulation of NLRC3 significantly reversed cell viability 
(P < 0.05) and proliferation (P < 0.001) induced by Ang II 
[Figure  3d-f]. In addition, the overexpression of NLRC3 
suppressed cell migration (P < 0.05) induced by Ang II 
in VSMCs [Figure  3g-j]. Moreover, the overexpression of 
NLRC3 reduced the level of ROS in VSMCs treated with 
Ang II (P < 0.001) [Figure 3k and l]. Similarly, the increase in 
MDA (P < 0.001), the reduction in SOD (P < 0.05), and the 
decline in GSH-PX (P < 0.001) caused by Ang II treatment 
was repressed by the overexpression of NLRC3 in VSMCs 
[Figure  3m-o]. Collectively, these data demonstrated that 
NLRC3 counteracted the pro-growth effect and ROS induction 
by Ang II.

NLRC3 regulates the TRAF6/NF-κB axis to suppress cell 
growth and migration elicited by Ang II

In a previous study, NLRC3 was found to regulate the 
NF-κB signaling pathway.[15,23] First, we transfected the 
overexpression of TRAF6 into VSMCs, which resulted in 
increased mRNA (P < 0.001) and protein (P < 0.01) levels 
of TRAF6 [Figure  4a-c]. The overexpression of NLRC3 
suppressed cell viability and proliferation in VSMCs 
treated with Ang II, whereas the overexpression of TRAF6 
counteracted the effect of NLRC3 on cell survival (P < 0.01) 
and proliferation (P < 0.001) [Figure 4d-f]. In addition, the 
inhibitory effect of NLRC3 on cell migration was attenuated 
by the overexpression of TRAF6 in VSMCs induced by Ang 
II (P < 0.01) [Figure  4g-j]. Our findings demonstrated that 
NLRC3 inhibited cell growth and migration dependent on 
Ang II by regulating TRAF6.

NLRC3 regulates the TRAF6/NF-κB axis to suppress 
oxidative stress induced by Ang II

We further investigated the roles of the TRAF6/NF-κB 
axis on oxidative stress mediated by Ang II. The treatment 
of Ang II promoted the production of ROS in VSMCs 
and was repressed by the overexpression of NLRC3, and 
this phenomenon was reversed by the upregulation of 
TRAF6 (P < 0.001) [Figure 5a and b]. The increase in MDA 
(P < 0.01), the reduction in SOD (P < 0.01), and the decline 
in GSH-PX (P < 0.01) elicited by Ang II were reversed by 
the overexpression of NLRC3, while the overexpression 
of TRAF6 led to the elevation in MDA (P < 0.05), the 
reduction in SOD (P < 0.05), and the decrease in GSH-PX 
(P < 0.05) [Figure  5c-e]. Further analysis of IκBα and p65 
phosphorylation demonstrated that Ang II enhanced the 
phosphorylation of IκBα and p65, which was repressed 
by NLRC3 (P < 0.001). However, the overexpression of 
TRAF6 further promoted their phosphorylation (P < 0.01) 

[Figures  5f-h]. Collectively, these results demonstrated 
that NLRC3 inhibited oxidative stress induced by Ang II in 
VSMCs by suppressing the TRAF6/NF-κB axis.

DISCUSSION

Oxidative stress is deeply intertwined with the 
pathophysiology of hypertension.[24] However, its mechanisms 
are not well characterized. Recent studies have identified 
several potential mechanisms that drive vascular remodeling, 
including mechanical stimuli and inflammatory signals.[13,25,26] 
The migration and invasion of VSMCs are also involved 
in hypertension-related remodeling of vascular system.[27] 
Studies have also demonstrated the involvement of oxidative 
stress and lipid oxidation in vascular remodeling.[28,29] 
Excessive levels of ROS have been found to potentially cause 
vascular remodeling in various cardiovascular diseases by 
affecting endothelial dysfunction, inflammation, and VSMCs 
proliferation or migration.[30,31] The present study sheds light 
on the potential role of Nur77 in suppressing hypertensive 
oxidative stress by promoting the transcription of NLRC3, 
which regulates the TRAF6/NF-κB axis.

Nur77 is known to regulate inflammation and oxidative 
stress.[10,11,13,32] Pharmacological activation of Nur77 by 
6-mercaptopurine repressed inflammation and bone 
morphogenetic protein signaling, which repressed vascular 
remodeling.[33] 5-Aminosalicylic acid was shown to mitigate 
pulmonary arterial hypertension in rats by upregulating 
the expression of Nur77.[34] In addition, Nur77 inhibited 
the proliferation of vascular muscle cells.[33,35] Nur77 also 
suppressed the invasiveness of vascular muscle cells, which 
is a characteristic response of VSMCs to vascular injury and 
regeneration.[36,37] In addition, a recent study showed that 
Nur77 reduced ROS production and alleviate endothelial 
dysfunction by increasing NO production activating 
antioxidant pathways in vascular endothelium.[11] Other 
studies have shown that the knockout of Nur77 could 
aggravate oxidative stress induced by Ang II in VSMCs.[14,38,39] 
In the present study, the overexpression of Nur77 repressed 
growth and oxidative homeostasis mediated by Ang II in 
VSMCs.

Nur77, as a transcription factor, regulates cellular functions 
and disease progression by controlling the transcription 
of its target genes.[10,40] However, the targets of Nur77 
transcription involved in hypertensive oxidative stress are 
unclear. Our current study using JASPAR software prediction 
displayed NLRC3 as a potential transcriptional target. 
Further, validation demonstrated that Nur77 initiated the 
transcription of NLRC3 and increased the expression of 
NLRC3. Subsequently, we evaluated the function of NLRC3 
in oxidative stress induced by Ang II. These results fitted 
with the previous studies demonstrating the suppressive 
activity of NLRC3 in attenuating oxidative stress in different 
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Figure  3: Upregulation of NLRC3 suppresses cell proliferation and oxidative stress mediated by Angiotensin II (Ang II). (a) Reverse transcription 
quantitative polymerase chain reaction and (b and c) Western blot analysis were conducted to detect the expression levels of NLRC3 in vascular smooth 
muscle cells (VSMCs) after being treated with vector or oe-NLRC3 (n = 3). (d) Cell counting kit-8 assay was used to determine cell viability of VSMCs 
after being treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-NLRC3. (n = 3). (e and f) EdU assay was used to assess the 
proliferation of VSMCs after being treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-NLRC3 (n = 3). (g and h) Wound 
healing assay was used to measure the migration of VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-NLRC3 
(n = 3). (i and j) Transwell assay tested cell migration capability of VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) 
+ oe-NLRC3 (n = 3). Crystal violet was used to stain migration cell. (k and l) Reactive oxygen species production of the VSMCs treated with vehicle, Ang 
II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-NLRC3 was measured by 2’,7’-dichlorofluorescin diacetate (n = 3). (m-o) Enzyme-linked 
immunosorbent assay was employed to determine the levels of malondialdehyde, superoxide dismutase, and glutathione peroxidase in VSMCs treated 
with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, and Ang II (2 µM) + oe-NLRC3 (n = 3). (* P < 0.05, ** P < 0.01, *** P < 0.001. EdU: 5-ethynyl-2’-
deoxyuridine, AngII: Angiotensin II, NLRC3: Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 3.)
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Figure 4: NLRC3 regulates the TRAF6/nuclear factor-kappa B axis to suppress the proliferation and migration of vascular smooth muscle cells 
(VSMCs) treated with Angiotensin II (Ang II). (a) Reverse transcription quantitative polymerase chain reaction and (b and c) Western blot analysis 
were performed to detect the expression levels of TRAF6 in VSMCs treated with vector or oe-TRAF6 (n = 3). (d) Cell viability of VSMCs treated 
with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, Ang II (2 µM) + oe-NLRC3, Ang II (2 µM) + oe-NLRC3+ vector, and Ang II (2 µM) + oe-
NLRC3 + oe-TRAF6 was evaluated by Cell counting kit-8 assay (n = 3). (e and f) Proliferation of the VSMCs treated with vehicle, Ang II (2 µM), 
Ang II (2 µM) + vector, Ang II (2 µM) + oe-NLRC3, Ang II (2 µM) + oe-NLRC3+vector, and Ang II (2 µM) + oe-NLRC3+ oe-TRAF6 was assessed 
by EdU assay (n = 3). (g and h) Migration of the VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, Ang II (2 µM) + oe-NLRC3, 
Ang II (2 µM) + oe-NLRC3 + vector, and Ang II (2 µM) + oe-NLRC3+oe-TRAF6 at 0 and 24 h was evaluated by wound-healing assay (n = 3). (i 
and j) Transwell assay was performed to measure the migration capacity of the VSMCs treated with vehicle, Ang II (2 µM), Ang II (2 µM) + vector, 
Ang II (2 µM) + oe-NLRC3, Ang II (2 µM) + oe-NLRC3 + vector, and Ang II (2 µM) +oe-NLRC3 + oe-TRAF6 (n = 3) Crystal violet was used to 
stain migration cell. (* P < 0.05, ** P < 0.01, *** P < 0.001. EdU: 5-ethynyl-2’-deoxyuridine, AngII: Angiotensin II, NLRC3: Nucleotide-binding 
oligomerization domain-like receptor family caspase recruitment domain containing 3, TRAF6: tumor necrosis factor receptor-associated factor 6.)
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hypertension models.[17] The most well-defined downstream 
pathway that is negatively regulated by NLRC3 is the NF-
κB pathway.[16,41,42] In a recent study, the loss of NLRC3 led 
to the dysregulated activation of the NF-κB/HIF-1α pathway 
with excessive inflammation, which aggravated pulmonary 
hypertension.[43] Furthermore, NF-κB signaling contributes 
to oxidative stress mainly through its immunomodulation 

and inflammatory regulatory activity.[39,44] Pharmaceutical 
inhibition of NF-κB has been shown to mitigate 
pulmonary arterial hypertension.[45] In a previous study, 
the knockdown of TRAF6 inhibited the proliferation of 
VSMCs and inflammation.[46] In addition, the inhibition 
of lncRNA MINCR antagonized lipopolysaccharide-
induced acute injury and inflammation through the 

Figure 5: NLRC3 regulates the TRAF6/nuclear factor-kappa B axis to suppress oxidative stress induced by Angiotensin II (Ang II). Vascular 
smooth muscle cells were treated with Ang II (2 µM), Ang II (2 µM) + vector, Ang II (2 µM) + oe-NLRC3, Ang II (2 µM) + oe-NLRC3 + 
vector, and Ang II (2 µM) + oe-NLRC3 + oe-TRAF6. (a and b) Reactive oxygen species production measured by 2’,7’-dichlorofluorescin 
diacetate in the treated cells (n = 3). (c-e) Results of Enzyme-linked immunosorbent assay showing the levels of malondialdehyde, superoxide 
dismutase, and Glutathione peroxidase in the treated cells (n = 3). (f-h) Western blot analysis was conducted to determine the levels of 
phosphorylated p65 and inhibitory subunit of nuclear factor-kappa B alpha in the treated cells (n = 3). (* P < 0.05, ** P < 0.01, *** P 
< 0.001. EdU: 5-ethynyl-2’-deoxyuridine, AngII: Angiotensin II, NLRC3: Nucleotide-binding oligomerization domain-like receptor family 
caspase recruitment domain containing 3, TRAF6: tumor necrosis factor receptor-associated factor 6. )
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TRAF6/NF-κB pathways.[47] Another study suggested that 
NLRC3 repressed NF-κB activation by deubiquitinating 
TRAF6.[48] Consistently, our current data indicated that 
NLRC3 upregulation mediated Ang II-mediated VSMCs 
abnormality, while the activation of NF-κB signaling (TRAF6 
overexpression) reversed the suppressive role of NLRC3 on 
cell proliferation and oxidative stress.

In summary, our results indicated that the overexpression of 
Nur77 induced the transcriptional upregulation of NLRC3, 
which inhibited growth and redox imbalance dependent 
on Ang II in VSMCs by deactivating NF-κB signaling. Our 
findings suggest a previously undefined Nur77/NLRC3/
TRAF6/NF-κB axis that maintains oxidative homeostasis 
and growth and migration of VSMCs in hypertension. 
Our study suggests a link between factors that are known 
to regulate vascular oxidative stress. This understanding 
provides innovative perspectives into the pathogenesis and 
progression of hypertension. Our findings may also help 
identify potential therapeutic targets for hypertension.

SUMMARY

In this study, putative-binding sites for Nur77 on the NLRC3 
promoter region were revealed through bioinformatics analysis. 
Meanwhile, Nur77 was found to upregulate the expression of 
NLRC3 expression and repress the TRAF6/NF-κB signaling 
pathway. These phenomena resulted in the reduction in oxidative 
stress induced by Ang II, which ameliorated hypertension. Our 
results provide a new insight into mechanisms underlying 
hypertension induced by Ang II and indicated potential 
therapeutic targets for the treatment of hypertension.
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